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Abstract—Background: Pixel-level tissue classification for ul-
trasound images, commonly applied to carotid images, is usually
based on defining thresholds for the isolated pixel values. Ranges
of pixel values are defined for the classification of each tissue.
The classification of pixels is then used to determine the carotid
plaque composition and, consequently, to determine the risk of
diseases (e.g., strokes) and whether or not a surgery is necessary.
The use of threshold-based methods dates from the early 2000’s
but it is still widely used for virtual histology.

Methodology/Principal Findings: We propose the use of descrip-
tors that take into account information about a neighborhood of a
pixel when classifying it. We evaluated experimentally different
descriptors (statistical moments, texture-based, gradient-based,
local binary patterns, etc.) on a dataset of five types of tissues:
blood, lipids, muscle, fibrous, and calcium. The pipeline of the
proposed classification method is based on image normalization,
multiscale feature extraction, including the proposal of a new
descriptor, and machine learning classification. We have also
analyzed the correlation between the proposed pixel classification
method in the ultrasound images and the real histology with the
aid of medical specialists.

Conclusions/Significance: The classification accuracy obtained
by the proposed method with the novel descriptor in the
ultrasound tissue images (around 73%) is significantly above
the accuracy of the state-of-the-art threshold-based methods
(around 54%). The results are validated by statistical tests. The
correlation between the virtual and real histology confirms the
quality of the proposed approach showing it is a robust ally for
the virtual histology in ultrasound images.

Index Terms—virtual histology; pixel-level tissue classification;
ultrasound images; carotid plaque composition;

I. INTRODUCTION

Extracranial carotid artery disease is a preventable cause
of ischemic cerebrovascular accidents (strokes). The carotid
plaque is usually classified according to the degree of stenosis
and most surgical trials have used a 70% or greater diameter
loss as indication for surgery [9], [20], [24]. The techniques
to measure stenosis are already well established and follow
international standardization. More recently, it was recognized
that not only must the degree of stenosis be evaluated, but also
the carotid plaque instability, as it is an important determinant
of stroke risk, since it may trigger an episode of local
thrombosis or lead to distal embolization of plaque debris [10],
[19]. There are a number of different imaging techniques
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that provide information on carotid plaque morphology as
the duplex ultrasound (DU), computed tomography (CT), or
magnetic resonance imaging (MRI). These techniques allow
for the study of plaque surface and contents, plaque volume,
and vessel wall movement [12], [19], [31].

The advantages of studying the plaque with DU derive from
the noninvasive nature of the technique, the low cost, and easy
availability of the equipment, which renders it ideal for office-
based evaluations. Also, this technique is easily learned by the
health professionals and the anatomic superficial location of
the extracranial carotid arteries favors their insonation [19].

The study of plaque contents is directed to the identification
of the plaque constituents and their relative localization to the
luminal surface [2], [15], [21]. Lipids reflect ultrasound poorly
and produce an image which is predominantly dark in the
gray-scale B-mode ultrasound screen. Fibrotic tissue, which
renders the plaque more stable, produces a stronger reflection
of the ultrasound waves and appears lighter on the screen. For
this reason, the plaques that are more vulnerable or unstable
appear darker on the screen and are named echolucent and are
also named soft plaques or complicated plaques. In opposition,
more stable plaques are denser and appear lighter on the screen
and are named echogenic.

The vulnerability or instability of the plaque determines the
chances of having a plaque accident, where there may occur
a plaque rupture with distal embolization of debris or local
thrombosis. It is known that the presence and size of a lipid
rich core, associated or not with necrotic tissue or intraplaque
hemorrhage, is a determinant of plaque instability [10]. In
this way, the classification of the plaque according to this
necrotic/lipid core is the goal of the actual techniques.

The evaluation of the plaque constituents may be done
visually by the DU operator who classifies the plaque into
six categories [19]: uniformly echolucent (more than 85%
of the plaque appears dark); predominantly echolucent (with
50-85% of the plaque dark); predominantly echogenic (50-
85% of the plaque appears light); uniformly echogenic (more
than 85% of the plaque appears light); non-classifiable due to
heavy calcification, which precludes the visualization of the
plaque contents; and plaque with a luminal surface disruption,
which would indicate the presence of a plaque ulceration. This
classification is subjective and has a high variability among
DU operators.

In order to make it more objective, it was proposed to
classify the plaques according to image and mathematical anal-
ysis of the plaque constituents. The most frequent computer-
assisted analysis in ultrasound images is the gray-scale me-
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dian (GSM), which is the median of the histogram of the pixel
distribution of the plaque image according to the brightness
of the pixel on a 0-255 scale. A GSM value below 32 is
characteristic of plaques rich in lipids, and a GSM value below
15 is associated with a greater chance of having symptoms in
patients with a carotid artery plaque [7], [14].

The precise determination of the plaque constituents and
their localization is also desirable and could help in plaque
classification. Lal et al. [15] proposed the analysis of the
plaque constituents according to the pixel brightness level
for virtual histology. The threshold-based method of Lal et
al. [15] has been extensively applied in the evaluation of
coronary artery disease, with the use of Intravascular Ultra-
sound (IVUS), with some good results if compared with the
histological exams. Diethrich et al. [6] showed that, besides the
coronary images, IVUS can also be applied to carotid ones to
create a virtual histology. Good correlation in the histological
comparison was obtained. Nonetheless IVUS is an invasive
method.

The current most widely used methods for virtual histology
(VH) are based on defining ranges of pixel values for each
tissue (threshold methods). The pixel is then classified based
on its isolated value. Lal et al. [15], for instance, defined the
following ranges of pixel values for each tissue: 2 (0-4) for
blood, 12 (8-26) for lipid, 53 (41-76) for muscle, 172 (112-
196) for fibrous tissue, and 221 (211-255) for calcium. Related
methods also rely on the same idea [11], [18]. However, given
the nature of ultrasound images (e.g., noise, differences in
illumination) it is not straightforward to define such thresholds.
Additionally, defining disjoint ranges of pixel values for each
tissue can be impossible, as we show in the dataset used in
the experiments herein. Figure 4 shows the class overlap in
the pixel intensity distribution of the dataset considered here.

In this context, this paper proposes a new approach for
classifying tissues in ultrasound images at the pixel level,
similarly to how it is done in VH IVUS, with the advantage
that it is a totally non-invasive method. The proposed method
depends only on the recorded B-mode image, so it could
be performed after the patient examination. The method is
based on the use of visual descriptors, including a new
proposed descriptor, that takes into account information from
the neighborhood of a pixel, instead of considering isolated
pixel values. The neighborhood of a pixel is also analyzed
in multiple scales, capturing the pixel neighboring patterns,
which are not captured by traditional threshold methods. The
extracted features are used in a machine learning scheme for
predicting the class of each pixel. On top of that, because of
the difficulty of classifying each pixel due to the noisy nature
of the problem, we also deploy a normalization method for
stretching the dynamic range of the images.

We compare the proposed technique to existing ones in the
literature showing its effectiveness. We also analyze the novel
image descriptor used in the proposed method with respect
to other descriptors of the literature. Additionally, we perform
a histological specimen study that showed a good correlation
with the classification results obtained by the proposed virtual
histology method.

II. RELATED WORK

Intravascular Ultrasound (IVUS) has been successfully val-
idated in coronary arteries [25], [26]. However, IVUS uses
a catheter with a small ultrasound probe and is an invasive
method. In 2007, Diethrich et al. [6] evaluated virtual histology
IVUS imaging (VH IVUS) for carotid arteries and showed that
VH IVUS is well correlated to the real histology.

As this paper focuses on non-invasive solutions, in this
section, we present only non-invasive methods for tissue and
carotid classification.

To solve the main problem of plaque characterization, the
methods in the literature can be grouped into two categories:
(i) methods that study the plaque using global information,
i.e., based on the whole plaque image, for further classifying
it as symptomatic or asymptomatic, and (ii) methods that
classify individual pixels, which can then be used to help in
the diagnosis and to create the virtual histology. The method
proposed in this paper falls into the latter group.

A. Global Classification Methods

Mougiakakou et al. [23] tackled the problem of classifying
symptomatic and asymptomatic plaques. The authors used
a dataset of 54 symptomatic and asymptomatic images to
train a binary classifier for the target problem. The feature
extraction was done with the Laws’ texture energy, resulting
in 99 features that were reduced to 21 with analysis of variance
(ANOVA). A neural network was trained with a genetic
algorithm that selected the most robust features to train. This
method has shown a classification accuracy of 95%.

Acharya et al. [1] used a dataset of 160 plaques (110 asymp-
tomatic and 50 symptomatic) and, in all of them, 36 types
of features were extracted using Local Binary Pattern (LBP),
Fuzzy Gray Level Co-occurrence Matrix (FGLCM), Higher
Order Spectrum (HOS) features, and others. The classification
was made using probabilistic neural networks, decision trees,
and Support Vector Machines (SVM). The best result reported
was 90.6% of classification accuracy.

B. Pixel-Level Classification Methods

There are several methods in the literature aiming at clas-
sifying each pixel in an atherosclerotic plaque as one type of
tissue, while requiring only data from B-mode ultrasound to
do so. Almost all of them use the GSM value of the pixel for
the classification.

Sztajzel et al. [32] proposed the stratified GSM and eval-
uated its use with color mapping to predict plaque histology.
The stratified GSM is used to obtain a GSM value for each
group of pixels. Each group of pixels is defined according to
its pixel’s distance to the plaque surface: at each millimeter
increment, a new group is defined. The authors also used color
mapping to predict plaque histology. Pixels were classified into
three different colors: those with a gray-scale value under 50 as
red, between 50 and 80 as yellow, and above 80 as green. The
predominant color is then obtained with the aid of some strata
of the stratified GSM compared to the total GSM value (GSM
of the whole plaque). The authors demonstrated with real
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Fig. 1. Overview of the proposed method. The proposed method performs a normalization step followed by a multiscale description and uses a classifier
for pixel classification. The multiscale description step is applied to each pixel of the image by considering its neighbors in several scales. Based on the pixel
description, a classifier is trained to differentiate among the possible types of tissue.

histopathological exams that analysis of color predominance
with stratified GSM are correlated with the instability of the
plaque. Among the conclusions, one of them is that unstable
plaques have more of the red (0-50) color. In their work, the
pixels are not individually classified as the possible tissue.
Instead, the whole plaque is classified as either symptomatic
or asymptomatic.

Lal et al. [15] analyzed several tissue images to calculate
the GSM of each specific tissue. The values obtained with the
mean of medians and the range of the median of all the images
were 2 (0-4) for blood, 12 (8-26) for lipid, 53 (41-76) for
muscle, 172 (112-196) for fibrous tissue, and 221 (211-255)
for calcium. With those values, the atheroma plaque images
were colored so that each color represented a tissue. It was
observed that symptomatic plaques contain a high quantity
of blood and fat while asymptomatic plaques contain more
calcium.

Similar to Lal et al. [15], Madycki et al. [18] proposed
a range of values to classify the pixel into one kind of
tissue. These values (0-9 for blood, 10-31 for lipid, 32-74 for
muscle, 75-111 for fibrous tissue, and 112-255 for calcified
tissue), in contrast with Lal et al. [15], do not have any gaps,
therefore no pixel would be predicted as unknown. The study
showed that this analysis is more precise to predict the degree
of microembolism, as compared to the normal GSM of the
plaque.

One of the most recent articles for classifying each pixel
of the plaque as a tissue is the one proposed by Hashimoto
et al. [11]. The authors compared carotid endarterectomy
specimens and the GSM values of known tissues on ultrasound
B-mode images. The range of GSM values for each tissue
was 0-24 for blood, 25-68 for lipid, 69-225 for muscle/fibrous
tissues, and 226-255 for calcium. According to the authors,
using the distribution of the pixel intensities in the plaque,
was possible to predict the best diagnostic for the patient, i.e.,
whether the plaque was asymptomatic or if intervention was
needed.

All those works showed the importance of discovering the
plaque composition and how it can help physicians in routine
exams. It is important to mention that all aforementioned
threshold-based methods are computationally efficient, since
they are based only on the isolated pixel value. For the same
reason, however, the classification could be highly affected
by the inherent noise of the image acquisition process, small
changes of illumination, as well as inexperience of the DU
operator. On top of that, defining disjoint ranges for the pixel
values can be impossible, as we show in the experiments (see

Figure 4). With this in mind, we propose a method that can
be more robust to those problems and also sufficiently general
to solve the tissue classification problem.

III. PROPOSED METHOD

There is a limited number of works in the literature focused
on the tissue classification problem at the pixel level in
DU images. Most of the methods explained in the previous
section, the threshold-based methods, have a similar approach:
classification of pixels based on their intensity. We have
observed, however, that this classification methodology is not
completely well suited when extended for classifying atheroma
plaques, since it presents several problems regarding: noise,
illumination changes, motion changes during capture, etc. In
this sense, we devise an alternative way for approaching the
problem. Our method is based on the premise that one pixel
has a high probability of following its neighborhood pixel
properties (spatial coherence), therefore, it is likely that if
a small neighborhood around a pixel contains only blood
pixels, then this pixel will probably be of the class blood.
In addition, our characterization methodology also considers
consistency across different scales. The rationale is that a pixel
of a given tissue in one scale will be consistent across scales
when incorporating more neighbors.

In Figure 1, we present an overview of the proposed method.
The main steps of the proposed method are the normalization
of the input image, the description of each pixel based on
its neighbors by considering multiple scales, and the use of a
classifier for pixel classification.

We initially normalize the images to become more invari-
ant to different ultrasound configurations, and to stretch the
dynamic range of the images (see Section III-A). In the multi-
scale description step, we characterize each region of interest
(the region around the pixel under consideration) using a visual
descriptor (e.g., statistical, gradient, and texture properties).
This description considers multiple scales, i.e., considering
different sizes of the region of interest (RoI) around the pixel
(see Section III-B). Once a description is obtained for each
training pixel, we train a classifier for pixel-level classification.
In this work, we use the multiclass-from-binary SVM using
the pairwise approach [4] (see Section III-C).

In the remainder of this section, we present further details
on the steps of the proposed method.

A. Normalization

Ultrasound image normalization is the main step to make
possible the comparison of information obtained from im-
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ages captured from different instrumental settings, scanners,
operators, and any other factors that may change the image.
Indeed, many studies [30], [33] demonstrate the importance
of normalization methods for carotid plaque images. In this
paper, we used the method proposed in [8].

The normalization of all the tissues of a person is made
using the person’s carotid artery image as a reference. The
blood and the adventitia wall were chosen to take the values
0 and 190, respectively, and the other pixels in the image
were linearly scaled according to these values. Thus, for each
person, all the tissue images were normalized from the blood
vessel image. Figure 2 depicts some examples of tissue images
before and after the normalization.

Fig. 2. Normalization of ultrasound tissue images. Non-normalized (top)
and normalized (bottom) blood, lipids, muscle, fibrous, and calcium examples,
respectively.

If no access to the carotid image of a person is possible or
even the manual demarcation of the blood and adventitia wall,
an automatic normalization process might be accomplished
based on the a priori knowledge of blood and adventitia wall
of some training images.

B. Multiscale Description
We are interested in classifying each pixel separately, hence

all descriptors must take into account only a certain Region
of Interest (RoI) around the pixel. We define a RoI of a pixel
as a window of size n×n pixels (where n is an odd number)
centered around the pixel currently in analysis. The image is
then scanned using a sliding window approach. For describing
each window position, i.e., describing each RoI, we evaluated
different features, each one aiming at capturing different image
properties.

The scale of the scanned images eventually varies depending
on how the depth adjustment of the exam is performed. In or-
der to guarantee a greater steadiness, multiscale windows/RoIs
are used with all the types of descriptors tested (statistical-,
gradient-, and texture-based). We preferred to use small RoIs
(5 × 5 up to 13 × 13) in order to evaluate a pixel only in
terms of its local information, assuring we do not break the
pixel’s spatial coherence assumption. For each descriptor, we
calculated the feature vector on different window sizes and
then combined them. The combination of feature vectors in
each window size was made by concatenating the resulting
feature vector of each scale.

Below, we present details of the descriptors used in this
work: Statistical Moments Descriptor (SMD), HOG, LBP,
SASI, QCCH, Unser, and SID.

a) SMD: The Statistical Moments Descriptor (SMD),
which is a proposal of this work, discriminates the different
forms of pixel intensity distribution within a RoI. Formally,
we compute the following statistics: mean, standard deviation,
skewness, kurtosis, median, entropy, and range (see Table I).
The final feature vector f comprises a total of seven features,
i.e., f ∈ <7. For the definitions in Table I, pj is the value of
a pixel in the RoI, where j goes from 1 to N and N = n2.

TABLE I
DETAILS OF THE STATISTICS USED FOR STATISTICAL MOMENTS

DESCRIPTOR (SMD).

Statistics Symbol Formula

Mean p̄
1

N

N∑
j=1

pj

Standard De-
viation

σ

√√√√ 1

N − 1

N∑
j=1

(pj − p̄)2

Skewness γ1
1

N

N∑
j=1

[
pj − p̄

σ

]3

Kurtosis γ2

 1

N

N∑
j=1

[
pj − p̄

σ

]4

− 3

Median m The middle value of an ordered distribution of
p1, p2, · · · , pN .

Entropy H(I) −
N∑

j=1

p(pj) log2 p(pj), where p(pj) is the proba-

bility of occurrence of pj

Range R max(pj) − min(pj)

b) HOG: Visually, we can notice that certain tissues,
such as muscle and fibrous, have some sort of orientation
in lines. Therefore, we employed the Histograms of Oriented
Gradients (HOG) [5] to analyze the gradient orientations of
the RoI. HOG works as follows. Let W be the RoI under
consideration. Filtering W with the kernels [−1 0 1] and
[−1 0 1]

T , two filtered images Wx and Wy are obtained, which
can be interpreted as the horizontal and vertical variations of
the pixel, respectively. For each pixel in the RoI, the gradient
orientation (ΘW ) and magnitude are calculated, which means
that we obtain, respectively, the direction and the inten-
sity/magnitude in which the pixel varies the most in relation
to its neighbors. Then, the orientation values of the RoI are
uniformly quantized into B intervals (usually B = 9) and a
histogram of orientations is computed, generating a feature
vector with dimensionality B for each RoI. The magnitude is
the vote weight of the histogram.

c) LBP: An algorithm commonly used in the literature
for describing textures with low gray-scale variance is the
Local Binary Patterns (LBP) [28]. The algorithm works as
follows. For each pixel p in the RoI, we compare its value with
the values of the 8-neighborhood pixels in a specific sequence.
If the value of p is greater than or equal to the value of its
kth neighbor, we write 1 in the kth position of an 8-bit binary
string, otherwise, we write 0. Those 8 bits represent a decimal
number between 0 and 255 that are the LBP code of p. Then,
we create a histogram of 256 bins with the LBP codes of all
pixels in the RoI and use it as the RoI feature vector.
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d) SASI: The Statistical Analysis of Structural Infor-
mation (SASI) [3] descriptor encodes structural properties
of textures. Its feature extraction algorithm scans the RoI
using windows with multiple resolutions and orientations. The
first step of the algorithm is the choice of the window sizes
and orientations to be used. Each window can be covered
in different ways, that are determined by vectors called lag
vectors of value K = d(S/4) + 1e, where S is the width
of the window in pixels. For each window, the algorithm
runs through the RoI calculating a value of autocorrelation
considering different directions. At the end, the RoI has a set
of autocorrelation values for each direction and each window.
The mean and standard deviation of each set of autocorrelation
values are calculated and stored sequentially as a feature
vector. Then, the feature vector is normalized based on the
mean and standard deviation of all autocorrelation values of
all sets.

e) QCCH: The Quantized Compound Change Histogram
(QCCH) descriptor [13] encodes the texture information by
considering the relation of a pixel and its neighbors. The
extraction algorithm defines a squared neighborhood (window)
Nr(i, j) of radius r centered at pixel (i, j) in the RoI. The RoI
is scanned and, for each window position, the average gray
value is computed. From this resulting image, four variation
rates (horizontal, vertical, diagonal, and anti-diagonal) are
computed for each pixel and the average of those four values
is calculated. The obtained average values are non-uniformly
quantized into 40 bins and their histogram is used as feature
vector.

f) Unser: The Unser [35] descriptor was proposed with
the goal of reducing the complexity of the gray-level co-
occurrence matrix (GCOM or GLCM). The main idea is to
calculate two histograms, one of the sum and other of the
differences between pixels. The algorithm initially defines an
angle a to be considered between the neighboring pixels.
The RoI is scanned and, for each angle a defined, each
histogram is incremented independently: Hsum[a][f(p)+f(q)]
and Hdiff [a][f(p) − f(q)], where f(x) is the pixel value,
p is the current pixel, and q is its neighbor with an angle
a in relation to p. Then, the histograms are normalized
by the number of pixels in the RoI. From the histograms,
it is possible to extract measures in a similar way to the
co-occurrence matrix, which are: mean, standard deviation,
correlation, energy, entropy, and homogeneity. Those measures
compose the RoI feature vector.

g) SID: In the Steerable Pyramid Decomposition de-
scriptor [22], the input RoI is initially decomposed into two
sub-bands using a high-pass filter and low-pass filter. Next,
the resulting of the low-pass filter is recursively decomposed
into K sub-bands by band-pass filters and one sub-band for
a low-pass filter. Each step of the recursion captures different
directional information in a given scale. The median and the
standard deviation of each sub-band are stored as feature
vector.

C. Classification
Our goal is to classify each pixel (represented by its feature

vector obtained from its RoI) of an ultrasound image into one

of the known tissue classes of interest (blood, fat, muscle,
fibrous, and calcium). To do this, we need a supervised
learning model that can learn from the data and then predict
the correct class.

In this work, we used Support Vector Machines (SVM) [4]
for the classification step. The SVM classifier constructs
a hyperplane in the feature space, maximizing the margin
distance between the positive and negative class samples. For
the multiclass problem, one SVM classifier can be computed
for all pairwise combinations of n classes. Therefore, for
n = 5, we use n(n−1)

2 = 10 binary SVM classifiers to decide
among classes. The results of all those classifiers are combined
by a majority voting scheme, yielding a final decision [4].
Although we have used SVM in this work, any other multi-
class classifier would be applicable.

IV. EXPERIMENTS

In this section, we present the experiments performed to
evaluate the proposed method. Figure 3 depicts the whole ex-
perimental procedure. We use two different datasets. Dataset 1
consists of tissue images, in which every pixel of each image
has the same label, i.e., the entire images are of the same
tissue. Dataset 2 comprises carotid images whereby different
tissues can appear in the same image. For the second dataset,
in addition to the pixel classification (virtual histology), we
have also conducted the actual histology of each image, thus,
we could evaluate the correlation between the virtual histology
using our proposed method and the real histology.

We start by describing the datasets and the protocol used
for the experiments. Then, we present the experimental results
for each dataset.

A. Datasets

Ethics Statement: This study was approved by the Ethics
Committee of the University of Campinas receiving the num-
ber of identification 277.976 in 05/14/2013. All participants
provided written informed consent.

1) Dataset 1: Tissue Ultrasound Images: In order to extract
the information of each tissue, we built a dataset with images
of specific body parts that could represent a given tissue.
The body parts chosen to be scanned were the cervical
carotid artery (intravascular blood), the abdominal wall near
the umbilicus (subcutaneous fat), the anterior aspect of the
arm (biceps brachii for muscle), the posterior aspect of the
lower leg (calcanean tendon for fibrous tissue), and the anterior
aspect of the leg (tibia bone shaft for calcium). As we
capture images of specific regions of the body that have high
prevalence of one particular tissue, we made the assumption
(verified by a specialist) that all the pixels in such images
represent that tissue. The images were cropped to leave only
the chosen tissue in the final image. The crop was made with
the aid of a specialist, obtaining images with at most 150 ×
150 pixels, in which most of the image contains the desired
tissue.

All ultrasound images were obtained using an Acuson X300
equipment (SIEMENS AG, Munich, Germany), with a VF10-5
linear array transducer (set at 6.2 MHz) operating in B mode.
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We scanned 12 healthy volunteers (seven women and five men)
and obtained five images of each tissue (five tissues in total)
in two transducer orientations (transversal and longitudinal),
totaling 50 images per person and 600 images in the whole
dataset.

Due to the differences between the longitudinal and the
transversal images, we have worked with them separately.
For this paper, we mainly work with the images in the
transversal way, because the histological images are sliced in
this direction.

2) Dataset 2: Carotid Ultrasound and Histological Images:
To measure the effect of our algorithm in a practical setup, a
second dataset of carotid images, scanned in the transversal
plane, was obtained immediately before patients were sub-
mitted to carotid endarterectomy surgery. The images were
obtained by a GE LOGIQ S6 device (Tokyo, Japan) with
a 10L linear array transducer (10 MHz) in B mode. Six
plaques of patients were analyzed. The patients that underwent
surgery are symptomatic and have from 50 to 80 years old.
The atheroma specimens were fixed in formaldehyde, sliced,
and processed in the Pathology Department, University of
Campinas. To guarantee that the ultrasound image and the
histological specimen were compared in same localization, the
ultrasound images were scanned in the location with maximum
stenosis, and the plaques were sliced in the same place.

B. Experimental Protocol

We adopted the following protocol for measuring the ac-
curacy of the methods: first, we separated the tissue images
(Dataset 1) into two groups with the same size, one to train
the classifier and find its parameters and the other to evaluate
its performance. The same number of pixels were analyzed in
the five classes to avoid unbalanced training. Also, there were
no images of the same patient in both groups. This way, we
guarantee that images of a person in the testing set were never
seen by the classifier during training, which better simulates
a real scenario of use.

Our protocol classifies pixels independently of movement.
That is, the classification is performed frame-wise, not consid-
ering transitions between frames when scanning tissues. The
analysis is made on a single frame that is acquired in a fraction
of the cardiac cycle. The training was made in tissues that
present no movement (muscle, calcium, fat, etc).

For each scale (RoI size from 5 to 13), we randomly
sampled 2,000 RoIs (400 from each tissue class) for the
training dataset. From this training set, we extracted the feature
vectors using each descriptor described in Section III-B and
trained an SVM multiclass classifier, performing grid search
in the parameters C and γ [4]. Then, 5,000 RoIs (1,000 from
each class) from the test partition were selected to measure
the accuracy of the classifiers for each scale analyzed. The
whole procedure was repeated 10 times with different random
partitions and samples for training and testing. Based on the 10
runs, confidence intervals (95% of confidence) were computed.
For statistical analysis, we used the Wilcoxon signed-rank test.

As ultrasound images have an inherent multiplicative noise
called speckle, we also repeated the experiments for the images

after noise reduction. On one hand, the speckle noise itself
makes the visual analysis difficult. On the other hand, the
speckle itself could provide important information about the
image and its tissues, depending on the extraction method
used [27]. There are many filters that can be used to perform
speckle noise reduction in ultrasound images [16]. We use
the median filter, which replaces the center value of a 7× 7-
window by the median of the pixel values in such window. In
the experiments, we compare the results in the original and in
the filtered images.

To measure the accuracy in Dataset 1, we used the ratio
of correctly classified pixels Nc in relation to the number of
pixels in the image N . Formally, Acc = Nc/N .

Once we evaluated all descriptors with multiscale configu-
rations in Dataset 1, we obtain the best trained classifier. Using
this classifier, we performed the tests on the dataset of carotid
images (Dataset 2) aiming at comparing the virtual histology
with the real one. This scheme is depicted in Figure 3, where
the first test phase refers to the tests performed on Dataset 1
of tissue images and in the second test phase the tests are
performed on Dataset 2 of carotid images.

C. First Test Phase: Experiments with Tissue Image Set

In this section, we describe experiments using the tissue
images (Dataset 1). We first compare the image descriptors
in a single-scale approach (see Section IV-C2). We also
evaluate the descriptors by combining their results using a
fusion scheme based on SVM scores. We perform a deeper
evaluation of the best descriptor found (the Statistical Mo-
ments Descriptor), considering the multiscale analysis (see
Section IV-C3). Once we obtained the best combination of
descriptor and multiscale configuration, we also evaluate the
impact of the training set size (see Section IV-C4). Finally,
we show a confusion matrix based on the possible classes of
tissues, i.e., blood, lipids, muscle, fibrous, and calcium (see
Section IV-C5).

1) Baseline: threshold-based methods: To compare the dif-
ferent characterization approaches, we first define our baseline.
In most related work, as presented in the Section II, the pixel
classification is based only on its intensity value, which is
defined according to prespecified ranges.

The problem in those approaches is that different sets of
images may produce very different range values. Instead of
using one of the threshold values proposed in the literature,
which could have some bias due to the dataset, we decided
to calculate the best threshold that could separate the tissues
in our dataset. Using 30,000 pixels from the normalized
tissue dataset (Dataset 1), we calculated a histogram of pixel
intensities (from 0 to 255) for each type of tissue, with the
same number of pixels per tissue. This procedure can be
seen as a generalization of the aforementioned threshold-based
methods [11], [15], [18] as it calculates the best ranges based
on the training dataset.

The intersection of the histograms can be seen in Figure 4.
It is easy to see that the pixel values of different tissues are
superposed. For instance, fibrous and calcium have similar
frequencies in almost all bins. To find the best range of values,
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Tissue images
Normalization Multiscale description Classifier Outcome

Carotid images
Normalization Multiscale description Classifier

Pixel-level 
classification

Virtual histologyReal histology

First test phase

Second test phase

Best trained 
classifier on 
tissue images

Histology comparison
(Optional)

Fig. 3. Evaluation of the method. The tests using the proposed method are performed in two phases. In the first test phase, we use tissue images in which
we assume that all pixels in each image are of the same tissue. In the second test phase, the best classifier obtained in the first phase is used in the carotid
ultrasound images, generating the plaque coloring and consequently, the virtual histology. Finally, we may compare virtual and real histology. The dash lines
indicate that the linked boxes have the same configuration.

Fig. 4. Pixel Intensity distribution of the tissues. This histogram shows
pixel-value frequencies for each type of tissue (Blood, Lipids, Muscle,
Fibrous, and Calcium). Note the difficulty for establishing one threshold for
classifying each type of tissue (there are several class overlaps).

we used a brute-force approach calculating the accuracy for
all possible different ranges. The best accuracy achieved was
54.01% with the following intervals for each tissue: blood
(0 − 16), lipid (17 − 37), muscle (38 − 83), fibrous tissue
(84− 160), and calcified tissue (161− 255).

2) Descriptor Comparison: In Table II, we show the
accuracies of each descriptor in isolated scales, i.e., when
using only one RoI size during feature extraction. We are
showing only the scales in which descriptors presented better
accuracies. We can see that proposed SMD achieves the
highest accuracy rates, which are in fact, far above the other
descriptors.

For SMD, the smaller RoI (9× 9) was only slightly worse
than the larger one (13 × 13). A different behavior can be
observed for the other descriptors, which were significantly
worse with the smaller RoI. As most of the other descriptors
are based on texture, having a larger neighborhood could
provide more information about the pixel’s local texture. On
top of that, the other descriptors are usually not employed
for pixel classification, being popularly used for image classi-
fication. SMD is invariant to rotation and small translation.
Additionally, as many of the statistics used in SMD are
not largely affected by the inclusion of possible outliers, its
accuracy remains similar in both 13× 13 and 9× 9 RoI sizes.

Comparing the results for the original and the filtered
images, we see that there is no statistical difference (Wilcoxon
signed-rank test) for most of the descriptors. This result
suggests that the descriptors were not affected by the speckle
noise in the dataset.

Comparing the results with the baseline (54.01%), we can
see that, for the larger RoI (13 × 13), the descriptors SMD,
SASI, QCCH, Unser, and SID are better than the baseline.
For the smaller RoI, SMD is the only one to be better than
the baseline. Those results illustrate that by considering the
pixel neighborhood, we can obtain a better estimation of the
pixel class, in comparison with the strategy that uses only the
isolated pixel value.

It is worth noting that the baseline approach could “learn”
from a larger portion of the training set in comparison to the
other descriptors. For finding the thresholds for the baseline,
30,000 pixels were used, but for the other descriptors, only
2,000 pixels were used for training the classifier. The possible
effect of this difference would be an improvement in the
accuracy of the baseline, but we could see that even with this
advantage, the baseline was worse.

Descriptor Fusion: With the aim of improving the clas-
sifier’s performance, we decided to evaluate the fusion of the
predictions of all the descriptors. The fusion strategy is based
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TABLE II
DESCRIPTOR ACCURACIES FOR ISOLATED SCALES (ROI SIZES 9 AND 13). WE CAN SEE THAT SMD ACHIEVES THE HIGHEST ACCURACIES. FILTERING

IMAGES FOR NOISE REDUCTION DID NOT AFFECT THE RESULTS. FUSION WAS NOT EFFECTIVE AS WELL.

(a) RoI size 9× 9 (b) RoI size 13× 13
Descriptor Original Images Filtered Images

SMD 69.58 ± 0.94 69.23 ± 0.58
HOG 47.66 ± 0.87 49.10 ± 0.64
LBP 34.23 ± 0.35 34.16 ± 0.37
SASI 35.16 ± 0.25 34.94 ± 0.58

QCCH 35.33 ± 0.43 34.72 ± 0.48
Unser 37.35 ± 0.35 35.61 ± 0.41
SID 35.27 ± 0.62 35.01 ± 0.43

Fusion 69.76 ± 0.74 69.55 ± 0.53

Descriptor Original Images Filtered Images
SMD 71.61 ± 0.66 71.24 ± 0.71
HOG 50.47 ± 0.72 51.00 ± 0.79
LBP 48.59 ± 0.95 48.57 ± 1.18
SASI 55.39 ± 1.19 56.99 ± 0.57

QCCH 63.75 ± 0.42 63.87 ± 0.50
Unser 66.34 ± 0.61 67.92 ± 0.65
SID 64.95 ± 0.55 64.75 ± 0.58

Fusion 71.26 ± 0.52 71.19 ± 0.31

on the classification probability function of the classifier (late
fusion) [4], [29], which estimates the probability of a given
test sample of belonging to each class. For each descriptor,
we acquire the probability for each class. For the fusion of n
descriptors, the final decision value for the class C is the sum
of the n probability values for C. The class with the highest
final decision value is chosen.

Even by considering all the possible combinations of de-
scriptors/classifiers, we were not able to find a combination
that was statistically better than the single proposed SMD (no
fusion). The best fusion results are in the last row of Table II.
Therefore, we decided to focus the following experiments
with the best image characterization form we explored: the
Statistical Moments Descriptor (SMD).

3) Multiscale Analysis: Here, we performed a deeper anal-
ysis using SMD, as it was the best descriptor found in the
previous experiments. We first evaluate how the combination
of multiple RoI sizes can improve the results. We then evaluate
the impact of the training set size.

When the size of the analyzed RoI is larger, more neighbor-
hood information is available. This explains why the 13× 13
RoI size achieves better results than other smaller sizes.
However, note that it is important to limit the RoI size to
a maximum in order not to break the pixel’s spatial coherence
assumption. Some scales may contain important information
that others could not capture, because operators of the ultra-
sound machines might use different torque while capturing the
images, therefore, we decided to combine feature vectors of
different scales and evaluate the performance of SMD.

In Table III, we show some of the combinations and their
accuracies. The best result was obtained with three scales of
sizes 9, 11, and 13. This result was statistically different from
the one using only one scale of size 13 (Wilcoxon signed-
rank test, two tail, p-value = 0.0013), as well as from the
best results with two and four scales (p-value = 0.014 and p-
value = 0.0098, respectively). Therefore, the feature vectors
with scales of size 9, 11, and 13 were chosen to be combined
(concatenated) for generating an optimal descriptor: multiscale
Statistical Moments Descriptor (MS-SMD).

4) Training Set Size: Having set MS-SMD with the best
scale as the combination of RoI sizes 9, 11, and 13, we then
sought to determine if the size of the training set is relevant
to the classification. To do so, we varied the number of RoIs
to train from 25 to 10,000. For each training set size, we
used the same protocol: randomly selected the same number

TABLE III
ACCURACIES WHEN COMBINING MULTIPLE ROI SIZES FOR THE

STATISTICAL MOMENTS DESCRIPTOR (SMD). WE CAN NOTE AN
IMPROVEMENT IN ACCURACY WITH THE MULTISCALE DESCRIPTION.

RoI sizes Accuracy
7 and 9 70.39 ± 0.48

9 and 11 70.97 ± 0.37
11 and 13 71.88 ± 0.08
5, 7, and 9 70.14 ± 0.54
7, 9, and 11 70.09 ± 0.59

9, 11, and 13 73.17 ± 0.38
5, 7, 9, and 11 69.87 ± 0.54

7, 9, 11, and 13 72.02 ± 0.40
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Fig. 5. Training-set size versus classification accuracy for MS-SMD.
Performance stabilizes for 1,000+ training samples.

of RoIs per tissue class for training, and testing with 5,000
RoIs randomly selected from the images not used for training.
The experiment was repeated 10 times for each set size as
well as in the previous sections.

Figure 5 depicts the results for different training sizes. The
Wilcoxon signed-rank test was used for comparing the results
using pairs of training set sizes, e.g., 25 × 100, 100 × 250,
and so on. The classification accuracy stabilizes for 1,000+
training samples, i.e., from this point on, there is no statistical
significance in changing the training set sizes.

5) Results: The final classification approach obtained is
the one using MS-SMD (multiple RoIs of size 9, 11 and
13) with 1,000 training examples per class. Table IV shows



9

TABLE IV
CONFUSION MATRIX OF THE TISSUE CLASSIFICATION USING MS-SMD.

ROWS REPRESENT THE REAL CLASS AND COLUMNS, THE PREDICTED
CLASS. THE MAIN CONFUSION IS BETWEEN FIBROUS AND CALCIUM

TISSUES. HOWEVER, FOR BLOOD AND LIPIDS (THE MOST IMPORTANT
TISSUES WHEN ANALYZING A CAROTID PLAQUE IMAGE), THE

ACCURACIES ARE THE HIGHEST ONES.

Blood Lipids Muscle Fibrous Calcium
Blood 91.35 8.62 0.02 0 0
Lipids 9.91 79.63 10.42 0.04 0
Muscle 0.23 16.03 63.49 18.83 1.42
Fibrous 0 0.01 12.26 55.67 32.05
Calcium 0 0 1.65 22.62 75.71

the classification confusion matrix for MS-SMD. Note, for
instance, that fibrous and calcium are tissues with a similar
echogenicity, so even with the MS-SMD approach, we were
not able to totally eliminate the miss-classification between
these two classes. Blood and lipids, that also have a similar
echogenicity, were well separated, with a small classification
error. Note also that for analyzing a carotid plaque image, the
two most important tissues are blood and lipids and both have
a good classification accuracy.

It is important to highlight that this is a pixel-level classifica-
tion, therefore it is not easy to achieve a perfect classification
score, since we are predicting the entire image pixel-wise.
Another problem is that it is impossible to ensure that 100%
of the training images really contain only pixels of the labeled
tissues. For instance, in a tibia bone, almost all the tissue is
calcium, however it may contain parts of other kinds of tissues.
On top of that, there is the universal presence of connective
tissue in nearly all tissues of the human body [34].

D. Second Test Phase: Experiments with Carotid and Histol-
ogy Set

In this section, we describe the experiments on Dataset 2
related to the “second test phase” of Figure 3, whereby
we perform virtual histology (see Section IV-D1) and then
compare the results with the histology on real carotid plaques
(see Section IV-D2).

1) Plaque Coloring: Beyond classifying each pixel individ-
ually, it is important to show the classification in a visible way
in the plaque in order to facilitate the work of specialists. This
is done with the concept of virtual histology, in which each
pixel of the ultrasound image is colored according to the tissue
classification. In our case, blood is seen as red, lipids as yellow,
muscles as blue, fibrous as green, and calcium as white. We
also set the intensity of the color according to the degree of
classifier certainty in the prediction (see Section III-C). For
example, if the classifier points out with a higher probability
that a pixel represents lipid, it will be colored with a brighter
tone of yellow. Some of the plaques colored by our method
are shown in Figure 7.

2) Histology Comparative: After coloring the carotid
plaque in the ultrasound images, we have performed the
real histology in the same plaques. According to previous
studies, the comparison of histological specimens to in vivo
images (and even in vitro images) is a difficult methodological
procedure [17]. When the atherosclerotic plaque is gathered at

surgery and during the preparation of the slices for microscopy,
a series of potential errors are introduced, as the loss of the
true lumen, disruption of the integrity of the plaque, loss of
constituents through the use of solvents, etc. Also, as speci-
mens are imaged ex-vivo they do not represent the true aspect
found in vivo, as the arterial wall is disrupted and the luminal
arterial pressure is not present, rendering the conclusions not
applicable to the real patient. Another important problem is
the alteration in the gray-scale brightness after embedding the
specimen in gel for ultrasound visualization or after preserving
the specimen in formaldehyde, which potentially renders the
pixel level evaluation not reliable. Therefore, we should take
such experiments of histology comparison (real and virtual)
as a complement to the experiments in the ultrasound tissue
images.

All the histological slices were digitized and analyzed by
an experienced pathologist. For each plaque, the histological
components calcium, fibromuscular tissue, lipid core, and
hemorrhage were selected and their area calculated. Then for
each type of tissue, we performed the Pearson correlation
between the percentages in the real histology and virtual
histology. Blood is correlated with hemorrhage, lipids with
lipids, calcium with calcium, and the compound fibrous and
muscular tissue with fibromuscular tissue.

Figure 6 depicts the plots of each type of tissue. In total, we
analyzed six plaques of patients sent to surgery. Analyzing the
results, we see that the results of the virtual histology using
the proposed method have similar percentage with histology
exams for lipids and fibromuscular tissue. Blood also has a
considerable similarity with the real histology exams.

In Figure 7, we show a comparison of the carotid plaques
colored by the proposed method (virtual histology) and the
real histology. The five images at the top correspond to five
different ultrasound images of the atherosclerotic plaque in
vivo from proximal to distal internal carotid starting at its
bifurcation position from the carotid bulb. Below them, we
have the macroscopic and microscopic images of the plaque
cut at approximately the same first (top-left image) and last
(top-right image) image slices. We can see, for instance, that
the cholesterol crystal deposits produce a gross appearance
with a brown–yellow color and this same region appears
mostly in yellow (lipids) in the virtual histology (results from
our algorithm). The observation of the images presented at
the many studies comparing imaging modalities to histological
slices demonstrate that the plaque constituents are easily dif-
ferentiated in both microscopic image and imaging modality,
and we have had the same perception in the analyzed plaques
thus far. More images comparing real and virtual histologies
are available in the supplementary material along with this
paper

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new method for classifying
tissues in ultrasound imagery at the pixel level. The proposed
method is basically composed of (i) image normalization,
(ii) multiscale description, and (iii) classification. The main
advantage of the proposed method is its capacity to consider
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Fig. 6. Pearson correlation of each type of tissue. The correlation values for each tissue are: blood (ρ = 0.456), lipids (ρ = 0.652), fibromuscular (ρ = 0.704),
and calcium (ρ = -0.338).

pixel-neighboring patterns, which are not encoded by existing
methods based on isolated pixel values. By also performing
multiscale description of image regions, the method can deal
with the intrinsic scale variability of the problem, as oper-
ators of ultrasound devices might use different torque while
capturing the images.

The proposed method was experimentally evaluated in tis-
sue and carotid images. A comparison with the state-of-the-
art techniques for pixel-level classification [11], [15], [18]
shows the quality of the proposed method and its advantages.
The best threshold-based method (a generalization of [11],
[15], [18] with thresholds dynamically calculated based on
a training set) achieved about 54% of pixel classification
accuracy, while the proposed method achieved more than 73%.
Additionally, we also show in the paper the correlation of the
virtual histology obtained by the proposed method with the
real histology.

A prototype implementing the proposed method is currently
in use in the University of Campinas Hospital, Brazil, and the
analyses conducted thus far indicate a good correlation with
the real histology and more confident results than threshold-
based methods. Obtaining better pixel-level tissue classifi-
cation is paramount for further providing a better plaque
classification in terms of asymptomatic or symptomatic, and
so, for determining the risk of diseases for the patient.

The main limitation of the proposed method is the time
required to perform the computation compared with the other
methods in the literature. For instance, to classify and nor-
malize a plaque region of around 100 × 100 pixels, the

proposed method takes about 5-15 seconds, while threshold-
based methods take about 1 second. The execution time was
measured in Matlab, in a machine with 8 GB of RAM and
2.4 GHz Intel Core i5 processor.

Although validated in the problem of carotid plaque classi-
fication, we believe that the method could also be used in the
classification of tissues in other types of ultrasound images as
well, with some specific changes such as the normalization
and scaling steps. The proposed technique may be expanded
to evaluate venous disease, since the age of the intraluminal
thrombus in deep venous thrombosis leads to changes in
the image brightness. The classification of edema, including
intracavity and parenchimatous fluids, may also benefit from
such evaluations. In addition, there are studies evaluating
the aspect of nodules in order to differentiate benign from
malignant disease, these studies could also benefit from our
solutions presented herein. In this way, we believe that the
computational improvement of the classification methods for
pixel brightness level is a promising technology with a long
growing path ahead. On top of that, we believe that the
proposed method is general enough to work with other kinds
of medical images, as computational tomography, for instance.
Tests in such applications and imaging technologies can be
interesting as possible future work.

To improve and validate the robustness of the algorithm, one
could train a specific classifier including images from many
different types of ultrasound devices to account for the natural
variability of acquisition devices. Furthermore, it is possible
to create a specific tissue classifier for each person, with the
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Fig. 7. Illustration of the comparative findings between virtual histology of ultrasound images and macroscopic and microscopic pathological findings.
The five images at the top correspond to five different ultrasound images of the atherosclerotic plaque in vivo from proximal to distal internal carotid starting
at its bifurcation position from the carotid bulb. The distance from the first and last images is approximately 5 mm. It can be seen that the plaque content
varies in quantity and position in the different slices. Below them, we have the macroscopic and microscopic images of the plaque cut at approximately the
same first (top-left image) and last (top-right image) image slices. It can be observed that the lipid rich foam cells and the cholesterol crystal deposits produce
a gross appearance with a brown–yellow color and appears in the virtual histology images as yellow, and sometimes red, pixels. The fibrin/collagen deposits
inside the plaque and the peripheral muscular layer appear white in the gross macroscopic view and as blue in the processed ultrasound images. The areas
that lack structures in the microscopic images are due to imperfections in the surface of the gross specimen, an artifact error that is not found in the in vivo
ultrasound images.

person’s own ultrasound images. This would eliminate the
variation between patients and create a more accurate classifier
to exam a patient. To make this possible it would be necessary
to scan a few images of specific tissues of this person (e.g.,
the abdominal wall near the umbilicus for subcutaneous fat,
the anterior aspect of the arm for muscle, etc.), and then train
the specific classifier to examine the carotid’s image.
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