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Abstract

In this paper, we present an unsupervised distance learning approach for

improving the effectiveness of image retrieval tasks. We propose a Reciprocal

kNN Graph algorithm that considers the relationships among ranked lists

in the context of a k-reciprocal neighborhood. The similarity is propagated

among neighbors considering the geometry of the dataset manifold. The pro-

posed method can be used both for re-ranking and rank aggregation tasks.

Unlike traditional diffusion process methods, which require matrix multipli-

cation operations, our algorithm takes only a subset of ranked lists as input,

presenting linear complexity in terms of computational and storage require-

ments. We conducted a large evaluation protocol involving shape, color,

and texture descriptors, various datasets, and comparisons with other post-

processing approaches. The re-ranking and rank aggregation algorithms

yield better results in terms of effectiveness performance than various state-

of-the-art algorithms recently proposed in the literature, achieving bull’s eye

and MAP scores of 100% on the well-known MPEG-7 shape dataset.
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1. Introduction

The development of multimedia technologies for creating and sharing

digital contents has triggered an exponential increase of image collections.

Traditional search approaches based on image metadata can be unfeasible

for large collections, since much human intervention is required for image

annotation. Content-Based Image Retrieval (CBIR) systems has emerged

as a promising alternative, aiming at retrieving the images which are the

most similar to a given query.

The effectiveness of CBIR systems is very dependent on the distance

measure adopted. Images are often modelled as high dimensional points in

an Euclidean space, and the distance among them is usually measured by

Euclidean distances. In this scenario, CBIR systems often consider only pair-

wise image analysis, that is, compute similarity measures considering only

pairs of images, ignoring the information encoded in the relations among

several images. On the contrary, the user perception considers the query

specification and responses in a given context. In view of that, there has

been significant research [45, 44, 13, 26, 14] on improving the distance mea-

sures in CBIR systems, replacing pairwise similarities by more global affinity

measures that consider the relationships among images. The overall goal of

these methods is to mimic the human behavior on judging the similarity

among objects by taking into account the context of the search process. As

previous observed [43, 41], an effective distance measure should describe the

relationship between the query and retrieved objects in the context of the

whole collection.

Therefore, how to capture and utilize the intrinsic manifold structure of
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a collection becomes a central problem in the vision and learning commu-

nity [14]. A common recent approach is manifold learning, mainly based

on non-linear dimensionality reduction techniques. The idea is to explic-

itly construct a new embedding space with a corresponding metric which

is more faithful to the manifold structure and hence induces a better dis-

tance/similarity measure. The manifold learning algorithms are able to

learn distances between data points that correspond to geodesic distances

on the data manifold [45]. In other words, the new distances are estimated

considering a walk along the geometric structure of the dataset.

In this paper, we propose an unsupervised learning algorithm based on

Reciprocal kNN Graph. The proposed algorithm improves the effectiveness

of image retrieval through re-ranking and rank aggregation tasks by taking

into account intrinsic geometry of the dataset manifold. The capacity of

considering geometry of the dataset manifold is illustrated in Figures 1, 2,

and 3. We illustrate the Two-Moon dataset, comparing the Euclidean dis-

tance with the proposed Reciprocal kNN Graph. One point is selected as

a labeled point (marked with a triangle) in each moon. In the following,

all other data points are assigned to the closest labeled point, determining

their color. Figure 1 illustrates the classification computed by the Euclidean

distance. Figure 2 illustrates the ideal classification (with points in red and

blue) considering the dataset manifold. The Euclidean distance does not

consider the geometry structure of the dataset. As it can be observed, the

extremities of the moons are misclassified. Figure 3 illustrates the distances

learned by the Reciprocal kNN Graph, after only one iteration. We can

observe that several points were corrected compared with the Euclidean dis-

tance. The arrows in Figure 3 illustrates how the Reciprocal kNN Graph

algorithm iteratively propagates the similarity along the dataset structure
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considering the connectivity of the data set: (i) the red points in the left

and; (ii) the blue points in the right.

Figure 1: Euclidean distance. Figure 2: Ideal classfication.

Figure 3: Reciprocal kNN Graph (one iteration).

The Reciprocal kNN Graph is mainly based on the information encoded

in the top positions of the ranked lists. Given a query image, the ranked

lists represent a relevant source of contextual information, since they define

relationships not only between pairs of images (as distance functions), but

also among all the images in the ranked list. The modelling of similarity

information consists in the essential difference between the Reciprocal kNN

Graph approach and existing diffusion-based algorithms: the Reciprocal

kNN Graph is based only on the ranked lists, and therefore independent of

any distance (or similarity) scores.
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By analyzing the ranked lists, it is expected, for example, that simi-

lar images present reciprocal references at beginning of their ranked lists.

It is also expected that images ranked at the top positions of ranked lists

are similar to each other. In this way, aiming at redefining the distance

between two images, the Reciprocal kNN Graph uses both the reciprocal

nearest neighbor references and the graph structure considering all refer-

ences among images at top positions of ranked lists. This approach repre-

sents the main contribution of our method, since it enables exploiting the

maximum of contextual information available in the ranked lists with low

computational efforts. Another contribution relies on the efficiency of the

Reciprocal kNN Graph algorithm. Unlike other diffusion approaches based

on matrices multiplication [45, 43, 3], which presents complexity of O(n3),

our algorithm recomputes only the beginning of ranked lists with a constant

size of elements, which presents computational and storage requirements of

only O(n), where n represents the number of images in the collection.

We conducted a large evaluation protocol involving shape, color, and

texture descriptors, different datasets and comparisons with other post-

processing approaches. Experimental results demonstrate the effectiveness

of our method. The re-ranking and rank aggregation algorithm yields bet-

ter results in terms of effectiveness performance than various state-of-the-art

algorithms.

This paper is organized as follows: Section 2 discusses related work;

Section 3 discusses the definition of the image re-ranking problem; in Sec-

tion 4, we present our Reciprocal kNN Graph algorithm. Section 5 presents

the experimental evaluation and, finally, Section 6 draws on conclusions and

presents future work.

5



2. Related Work

Defining an effective distance measures consists in a key role in many

multimedia applications, including classification and retrieval tasks. For

example, choosing a good distance measure is often critical for building a

content-based image retrieval (CBIR) system. In general, aiming at retriev-

ing the most similar images to a given query image, CBIR systems compute

a predefined distance measure between the query image and each collection

image. Traditional distance measures that consider only the pairwise simi-

larity between two images, as Euclidean distance, are often adopted. These

approaches fail to return correct results in many scenarios, mainly due to

the well-known semantic gap problem [11].

Recently, there has been considerable research on improving the distance

measures in CBIR systems [43, 44, 15, 13, 41, 45, 3, 26]. The main idea of

various algorithms [45] is inspired by the success of Google PageRank [24]

algorithm. Basically, the data manifold is represented as a graph with edge

weights determined by similarity scores. Then, the similarities are propa-

gated through weighted connections in the context of other dataset objects.

In [43], a graph-based transductive learning algorithm is proposed for shape

retrieval tasks. Inspired by semi-supervised label propagation algorithm,

the shape retrieval was treated as an unsupervised problem. In [44], a lo-

cally constrained diffusion process is proposed where the influence of other

shapes is propagated as a diffusion process on a graph formed by a given

set of shapes. A shortest-path propagation algorithm was proposed [41]

for explicitly finding the shortest path between them in the distance man-

ifold of the dataset objects. However, a disadvantage of these methods is

the large computational efforts required in the diffusion process, which is
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usually O(n3).

Other methods analyze the k-neighborhood relationships for learning

new distance measures and performing re-ranking tasks. In [13], a contex-

tual dissimilarity measure was introduced aiming at improving the symme-

try of the k-neighborhood relationship by iteratively regularizing the average

distance of each vector to its neighborhood. The reciprocal kNN relation-

ships are considered in [29] to construct a close-set and a far-set, used for

performing a re-ranking task. Another kNN re-ranking [34] uses the top-k

retrieved object to refine retrieval results by using information of ranked

lists of each k neighbors. In [26], a recommendation process is simulated

aiming at exploiting information encoded in ranked lists and collaboratively

redefining pairwise distances.

The Reciprocal kNN Graph proposed in this paper combines character-

istics of different methods. It uses the reciprocal kNN information, but also

considers the graph structure constructed based on top positions of ranked

lists. The distance among images are collaboratively redefined taking into

account all references contained in top-k lists. Unlike other diffusion ap-

proaches [45, 43, 3], our algorithm redefines only the images placed at first

positions of ranked lists. This procedure presents computational and stor-

age requirements of only O(n). In addition, the Reciprocal kNN Graph can

be used for re-ranking and rank aggregation tasks, aiming at combining

different descriptors.

3. Problem Formulation

Let C={img1, img2, . . . , imgn} be an image collection, where n is the

number of images in the collection. Let D be an image descriptor which
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defines a distance function between two images imgi and imgj as ρ(imgi,

imgj). For simplicity and readability purposes, we use the notation ρ(i, j)

for denoting the distance between images imgi and imgj .

Based on the distance function ρ, a ranked list τq can be computed in

response to a query image imgq. Although the ranked lists contain distance

information from the entire collection, the top positions of ranked lists are

expected to contain the most relevant images related to the query image.

Therefore, it can be very desirable that the ranked list τq considers only

a subset of the ns most similar images, such that ns � n and ns is a

constant value. That is even more crucial specially for large collections,

where n is very high, and therefore τq is very expensive to compute. In

addition, various index structures [1, 31] that have been proposed to speed

up similarity queries can be used for computing the ranked lists.

The ranked list τq=(img1, img2, . . . , imgns) can be defined as a per-

mutation of the subset Cs ⊂ C, which contains the most similar images to

query image imgq, such that and |Cs| = ns. A permutation τq is a bijection

from the set Cs onto the set [ns] = {1, 2, . . . , ns}. For a permutation τq, we

interpret τq(i) as the position (or rank) of image imgi in the ranked list τq.

We can say that, if imgi is ranked before imgj in the ranked list of imgq,

that is, τq(i) < τq(j), then ρ(q, i) ≤ ρ(q, j). Note that, if the position of imgi

in the ranked list of imgq is higher than the constant ns, then τq(i) = ns.

We also can take every image imgi ∈ C as a query image imgq, in order

to obtain a set R = {τ1, τ2, . . . , τn} of ranked lists for each image of the

collection C. The storage requirements for handling the set R is O(n), since

the size of ranked lists is given by the constant ns.

Our objective is to define a function fr which takes a set of ranked lists

R as the input and computes a new and more effective set of ranked lists R̂
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by taking into account contextual information available on ranked lists:

R̂ = fr(R). (1)

The Reciprocal kNN Graph algorithm, presented in next section, rep-

resents a definition of the function fr. For rank aggregation tasks, which

combines ranked lists computed by different descriptors, the input of func-

tion fr is given by a set of sets {R1,R2, . . . ,Rm}, where m is the number

of descriptors used.

4. Reciprocal kNN Graph

In this section, we present the Reciprocal kNN Graph algorithm and

its application in re-ranking and rank aggregation tasks. We also discuss

convergence and efficiency aspects.

4.1. Motivation and Overview

Ranked lists represent a relevant source of contextual information, since

they establish relationships not only between pairs of images (as distance

functions), but also among all images in the ranked list. The objective of

Reciprocal kNN Graph is to exploit all available contextual information in

ranked lists using three main strategies:

• Reciprocal Neighborhood: the k-reciprocal nearest neighborhood

mitigates the risk of false positives at top positions of ranked lists.

•Collaborative Ranking: a ranked list can provide useful information

for improving effectiveness of other ranked lists. If two images appears at

the top position of any ranked list, it indicates that they are probably similar

to each other.
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• Authority of Ranked Lists: we propose a score to estimate the

authority of a given ranked list for collaborating with other ranked lists.

The score is based on density of the graph that represents the reciprocal

references among images at top positions of the ranked list.

The new distance score between two images is computed based on the

reciprocal reference between their ranked lists and collaboratively by other

ranked lists, considering their respective authority. The process is iteratively

repeated until a convergence criterion is reached.

The main concepts of the algorithm are formally defined in terms of

three scores: (i) Reciprocal kNN Score; (ii) Authority Score and; (iii) Col-

laborative Score. Based on these scores, a new distance measure (nominated

Reciprocal kNN Distance Measure) is computed. Figure 4 illustrates the

overall organization of the algorithm considering the proposed scores, which

are discussed in details in the next sections.

Figure 4: Main steps of the Reciprocal kNN Graph algorithm.
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4.2. Reciprocal kNN Score

Given a query image imgq, we can define a neighborhood set which

contains the k most similar images to imgq as N (q, k). For the k-nearest

neighbors query, we obviously have |N (q, k)| = k. The nearest neighbor

relationships are not symmetric [13, 29]. This means that imgi ∈ N (j, k)

does not imply imgj ∈ N (i, k). The set of k-reciprocal nearest neighbors of

image imgq can be defined [29] as:

Nr(q, k) = {imgi ∈ N (q, k) ∧ imgq ∈ N (i, k)}. (2)

We can easily verify if a given image imgi is a k-reciprocal nearest neigh-

bor of an image imgq by checking if imgi ∈ Nr(q, k). However, beyond

knowing if two images are reciprocal neighbors, we are also interested in the

position from which on images became reciprocal neighbors. Therefore, we

propose a Reciprocal kNN Score Rs that consider this position:

Rs(q, i) =
max(τq(i), τi(q))

ns
. (3)

This score reduces the probability of false positives at top positions of

ranked lists. Therefore, a low value represents a strong indication of simi-

larity between images.

4.3. Reciprocal kNN Authority Score

We consider that a ranked list encodes contextual information that can

be used for improving effectiveness of other ranked lists. In this scenario, it

is important to estimate the authority of a given ranked list. Our approach

is analogous to the PageRank [24] algorithm and inspired by the cohesion

measure [26]. We consider that an accurate ranked list has their top images
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referencing to each other at the top positions of their ranked lists. This

conjecture is somehow close to the cluster hypothesis [30], which states that

“closely associated items tend to be relevant to the same requests”.

Another important role of the authority score in the proposed algorithm

is to estimate the quality of a ranked list. In other words, the score is an

unsupervised predictor of effectiveness of a given ranked list. The computa-

tion of authority score is equivalent to measure the density of the graph that

represents the reciprocal references among images at top-k positions. The

Reciprocal kNN Authority Score of the ranked list τq is defined as follows:

As(q, k) =

∑
i∈N (q,k)

∑
j∈N (i,k) fin(j, q)

k2
, (4)

where fin returns 1 if imgj ∈ N (q, k) and 0 otherwise.

The score As is defined in the interval [0, 1]. Note that, for a complete

reciprocal graph (where all k images references each other at top-k positions)

this score returns a perfect score As(q, k) = 1.

4.4. Reciprocal kNN Collaborative Score

Beyond the Reciprocal kNN Score, the distance between two images is

defined using a collaborative score that considers information encoded in

other ranked lists and their respective authority score. This means that,

when an image imgi appears at top positions of a ranked list τq, the distance

among imgi and neighbors of image imgq (imgj ∈ N (q, k)) are reduced

proportionally to the authority of τq.

In this way, given two images imgq and imgi, we define a Reciprocal kNN

Collaborative Score, that accumulates the authority scores of all ranked lists

in which images imgq and imgi appear. The collaborative score considers

different values of k (varying from 1, 2, . . . , k) with the purpose of giving
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greater weights to references at top positions. The collaborative score Cs

between two images imgq and imgi is defined as follows:

Cs(q, i, k) =

k∑
c=1

∑
j∈C

As(j, c)
2 × fin(q, i, j), (5)

where fin returns 1 if imgq, imgi ∈ N (j, k) and 0 otherwise. A squared

value is used for the authority score aiming at penalizing low scores. Notice

that, although by definition j iterates for each j ∈ C (what requires linear

computation efforts on the size of the collection), the value As(j, c)
2 is added

only when imgq, imgi ∈ N (j, k), that is, considering only top-k positions.

Therefore, the collaborative score Cs(q, i, k) can be computed requiring only

O(k2).

4.5. Reciprocal kNN Distance Measure

In this section, we define an iteratively distance measure which is the

basis of the proposed re-ranking and rank aggregation algorithms. Using

this distance, a new set of ranked lists can be computed.

Based on Reciprocal kNN Score (Rs) and Reciprocal kNN Collaborative

Score (Cs), we define the distance measure ρr. All images imgq, imgi ∈ C

that present collaborative score Cs(q, i, k) > 0 have the distance between

them updated as:

ρr(q, i) =
Rs(q, i)

1 + Cs(q, i, k)
. (6)

The remaining images with zero collaborative score (Cs(q, j, k) = 0)

keep the distance between them as their current ranking, i. e., ρr(q, j) =

τr(j). No more computation efforts are required for those images. The main

motivation of Equation 6 is to consider information from both: (i) reciprocal
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reference between images being compared (dividend) and; (ii) information

given by ranked list of other images, according to their authority (divisor).

While the Reciprocal kNN Score (Rs) avoids false positives at top positions

of ranked lists, the Reciprocal kNN Collaborative Score (Cs) propagates the

similarity among different ranked lists, considering their quality estimation

given by authority score.

Based on the distance ρr, the set of ranked lists R is updated, for en-

suring that, if τq(i) < τq(j), then ρ(q, i) ≤ ρ(q, j). Finally, the process can

be iteratively repeated. Let the superscript (t) denotes the iteration and let

ρ
(0)
r be the distance at first iteration, we can define an iterative distance

measure as follows:

ρ(t+1)
r (q, i) =

R
(t)
s (q, i)

1 + C
(t)
s (q, i, k + t)

. (7)

Note the value of k grows along iterations. It is expected that non-

relevant images are moved out from the first positions of the ranked lists

and, therefore, k can be increased for considering more images.

4.6. Discussion

This section presents a detailed discussion on how the method works as

well as its main equations. As previously mentioned, the ranked lists define

relationships not only between pairs of images (as distance functions), but

also among all the images in the ranked list. In this sense, if an image is

well ranked for a given query, other images, similar to this image, are also

expected to be well ranked for the same query. This observation is consistent

with the “cluster hypothesis” [30], which states that closely related items

tend to be relevant to the same requests.
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The Reciprocal kNN Graph aims at exploiting the cluster hypothesis by

analyzing the reciprocal references among ranked lists at their top positions.

The three scores which define the algorithm are based on this principle: (i)

Reciprocal kNN Score; (ii) Reciprocal kNN Authority Score; (iii) Reciprocal

kNN Collaborative Score. We discuss the cluster hypothesis for each score

in the following.

Given two similar images, a content-based descriptor is expected to pro-

duce ranked lists which present reciprocal references at the beginning of

their ranked lists. When an image does not refer to the other image at the

top positions of its ranked list, this behavior indicates a low confidence in

the similarity between them. The Reciprocal kNN Score (Equation 3) repre-

sents the position in which this confidence is reached. Therefore, this score

can be used to provide a more accurate distance measure than that used to

compute the initial ranked lists.

However, the Reciprocal kNN Score considers the reciprocal references

only between pairs of images. In addition, it is also expected that im-

ages ranked at the top positions of ranked lists present reciprocal references

among each other (similar images tend to be relevant to the same queries).

Therefore, the Reciprocal kNN Authority Score (Equation 4) measures the

amount of reciprocal references by computing the density of the graph that

represents the references among images at top-k positions of a given ranked

list. Therefore, an effective ranked list which presents similar images at its

top positions will also present a high authority score. In this way, this score

can be used to estimate the effectiveness of a ranked list. Figure 5 illustrates

the computation of authority score, which is proportional to the number of

edges on the Reciprocal kNN Graph.

Once we have an estimation of the effectiveness of ranked lists given by
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Figure 5: Reciprocal kNN Authority Score computation.

the authority score, images which appear at top positions of effective ranked

lists are very likely to be similar. This assumption consists in the basis of

the Reciprocal kNN Collaborative Score. The collaborative score between

two images is given by the sum of authority scores of ranked lists in which

these two images appears at top positions.

Finally, the Reciprocal kNN Distance Measure is computed by combining

the Reciprocal kNN Score (that considers reciprocal references between two

images), and the Reciprocal kNN Collaborative Score (that considers the

top-k positions of all ranked lists using the Reciprocal kNN Authority Score).

4.7. Convergence

Basically, an iterative method is said to converge, if the difference be-

tween results obtained along iterations decreases, tending to reach an ul-
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timate result. In our case, a new distance measure should be iteratively

executed while the quality of ranked lists is improved. We define a conver-

gence criterion that determines the number of iterations using the proposed

authority score. While the authority of ranked lists is increasing more than

a threshold ε per iteration, the algorithm should continue executing. Given

that the authority score estimates the quality of ranked lists, the proposed

criterion is equivalent to keep executing the algorithm while the quality of

ranked lists are improving.

Aiming at verifying the convergence criterion, an average authority score

between all collection images is computed as follows:

Gs =

∑k
c=1

∑
j∈C As(j, c)

k × n
(8)

In the following, the difference between iterations is compared with the

threshold ε for defining the convergence criterion. The re-ranking is executed

while (G
(t+1)
s −G(t)

s ) > ε.

4.8. Rank Aggregation

In general, different types of measures may focus on different aspects of

the images and are often complementary to each other [3]. Our goal is to

use the Reciprocal kNN Graph algorithm to fuse different distance measures

in rank aggregation tasks. We propose a multiplicative approach inspired

by [26] for combining the Reciprocal kNN Graph Distance Measures of differ-

ent descriptors. The combination is computed only at the first iteration and

subsequent iterations are computed over the already combined ranked lists.

Let ρ
(1)
rd be the kNN reciprocal distance measure at first iteration of a given

descriptor d, with d defined in the interval [1,m], where m is the number of

descriptors considered. The fused distance measure can be defined as:
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ρ(1)
r (q, i) =

m∏
d=1

ρ(1)
rd

(q, i) (9)

By multiplying the distance measures between the same images consid-

ering different descriptors, high distances obtained by one descriptor will

be propagated to the others, leading to high aggregate values. Note that

our algorithm multiplies distance measures computed by the Reciprocal kNN

Graph algorithm and it does not depend on the original descriptors distance

measures. It only considers the ranked lists. Therefore, our approach does

not present a common problem in late fusion tasks of combining heteroge-

neous scores at different numeric scales.

4.9. Aspects of Efficiency

This section briefly discusses some aspects of efficiency, computational

complexity and storage requirements. The proposed algorithm takes as in-

put only the beginning of ranked lists (with a constant size ns of elements),

which becomes the storage requirements of O(n). It represents a significant

advantage in comparison with other methods that requires the complete

similarity/distance matrix [45, 26].

The asymptotic computational complexity of the algorithm is also O(n),

since only the ns top positions of ranked lists are redefined, independent on

the size n of the dataset. The computation of the authority and collaborative

scores, which presents the high computational effort needed, is proportional

to (nTk2), where T denotes the number of iterations and k the number of

neighbors considered when algorithm starts. Other steps of the algorithm

have diverse computation cost, but all limited to the asymptotic cost of

O(n). State-of-the art methods based on random walks on graphs [45, 43, 3]

uses matrices multiplication which presents complexity of O(n3). Beyond
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that, the Reciprocal kNN Graph algorithm has potential to be massively

parallelized.

5. Experimental Evaluation

This section demonstrates the effectiveness of the proposed re-ranking

and rank aggregation methods in image retrieval tasks. A large set of exper-

iments was conducted considering four datasets and nineteen CBIR descrip-

tors, aiming at analyzing and comparing our method under several aspects.

5.1. Experiment 1: Impact of Parameters

The computation of Reciprocal kNN Graph algorithm considers only two

parameters: (i) k: number of neighbors considered when algorithm starts;

and (ii) ε: convergence threshold parameter.

To evaluate the influence of different parameter settings on the retrieval

scores and for determining the best parameters values, we conducted a set

of experiments considering the MPEG-7 [17] dataset. The MPEG-7 [17]

dataset is a well-known shape dataset, composed of 1400 shapes divided

in 70 classes. For evaluation, the so-called bull’s eye score was considered,

which counts all matching objects within the 40 most similar candidates.

Since each class consists of 20 objects, the retrieved score is normalized with

the highest possible number of hits. For distance computation, we used the

Contour Features Descriptor (CFD) [25] shape descriptor.

We varied the parameter k in the interval [1, 20] and iterations in the

interval [1, 15]. Figure 6 illustrates the results of precision scores for different

values of k and iterations.

We observed that best retrieval scores increased along iterations yielding

the best precision score (96.49%) for k = 15 and final iteration T = 7. At
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Figure 6: Impact of k and the number of iterations on precision.

this iteration, the difference value of convergence score to previous iteration

is 0.0125. Therefore, we set the parameter values as k = 15 and ε = 0.0125.

Figure 7 illustrates the evolution of convergence score along iterations. As

we can observe, the algorithm converges very quickly, requiring a very small

number of iterations for reaching the threshold.

As previous discussed, our algorithm considers only a subset of ranked

lists. The size of ranked lists considered in experiments is ns = 200. These

values are used in all experiments, both for re-ranking and rank aggregation

tasks, considering different descriptors and datasets, what demonstrates the

robustness of our method.

5.2. Experiment 2: Re-Ranking Evaluation

In this section, we present the set of conducted experiments for evalu-

ating our method in the task of re-ranking images considering shape, color,
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Figure 7: Convergence of Reciprocal kNN Graph algorithm.

and texture descriptors.

5.2.1. Shape Descriptors

We evaluate the use of our method with six shape descriptors: Segment

Saliences (SS) [32], Beam Angle Statistics (BAS) [2], Inner Distance Shape

Context (IDSC) [18], Contour Features Descriptor (CFD) [25], Aspect Shape

Context (ASC) [19], and Articulation-Invariant Representation (AIR) [10].

We consider the MPEG-7 [17] dataset, described in Section 5.1.

Table 1 presents results considering the bull’s eye score (Recall@40 ) and

accuracy (Precision@20 ) for shape descriptors on the MPEG-7 [17] dataset.

We can observe very significant gains in relation to the results observed for

each descriptor initially, ranging from +6.69% to +29.48% for the bull’s eye

score and ranging from +6.10% to +40.50% for the accuracy measure.
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Table 1: Reciprocal kNN Graph for various shape descriptors on the MPEG-7 dataset.

Shape Bull’s Reciprocal Gain Accuracy Reciprocal Gain

Descriptor Eye kNN kNN

Score Graph Graph

SS [32] 43.99% 56.96% +29.48% 35.50% 49.88% +40.50%

BAS [2] 75.20% 86.50% +15.03% 67.33% 78.25% +16.22%

IDSC [18] 85.40% 93.38% +9.34% 77.21% 88.91% +15.15%

CFD [25] 84.43% 96.49% +14.28% 75.59% 91.80% +21.44%

ASC [19] 88.39% 95.27% +7.78% 80.66% 90.60% +12.32%

AIR [10] 93.67% 99.94% +6.69% 88.17% 93.55% +6.10%

The iterative behavior of the Reciprocal kNN Graph algorithm can be

observed in the results shown in Figure 8. The figure shows the evolution of

rankings along iterations. The first row presents a query image (first column

with green border) and 20 image results, according to the CFD [25] shape

descriptor. Note that wrong results (with red border) contain images from

different classes. The remaining rows present the results for each iteration of

Reciprocal kNN Graph algorithm. We can observe the significant improve-

ment in terms of precision, ranging from 20% (on the ranking computed

by the CFD [25] descriptor) to 100% at the 7th iteration of the proposed

re-ranking algorithm.

Results for shape descriptor considering the MAP (Mean Average Pre-

cision) score are presented in Table 2. We can observe positive gains for all

shape descriptors ranging from +8.54% to +37.99%.

5.2.2. Color Descriptors

We evaluate our method with three color descriptors: Border/Interior

Pixel Classification (BIC) [35], Auto Color Correlograms (ACC) [12], and
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Table 2: MAP scores for Reciprocal kNN Graph in different re-ranking tasks.

Descriptor Type Dataset Score

(MAP)

Reciprocal

kNN

Graph

Gain

SS [32] Shape MPEG-7 37.67% 51.98% +37.99%

BAS [2] Shape MPEG-7 71.52% 82.01% +14.67%

IDSC [18] Shape MPEG-7 81.70% 91.16% +11.58%

ASC [19] Shape MPEG-7 85.28% 93.15% +9.23%

CFD [25] Shape MPEG-7 80.71% 94.12% +16.62%

AIR [10] Shape MPEG-7 89.39% 97.02% +8.54%

GCH [36] Color Soccer 32.24% 33.69% +4.50%

ACC [12] Color Soccer 37.23% 42.11% +13.11%

BIC [35] Color Soccer 39.26% 45.28% +15.33%

LBP [22] Texture Brodatz 48.40% 51.05% +5.48%

CCOM [16] Texture Brodatz 57.57% 66.30% +15.16%

LAS [38] Texture Brodatz 75.15% 78.04% +3.85%
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Figure 8: Evolution of rankings along iterations on the MPEG-7 [17] dataset. The first

column (green border) contains the query image. The first row presents the results of

CFD [25] shape descriptor (wrong results with red borders). The remaining rows present

the results of Reciprocal kNN Graph algorithm for each iteration (iterations grow from

top to bottom).

Global Color Histogram (GCH) [36]. The experiments were conducted on a

dataset used in [42] and composed of images from 7 soccer teams, containing

40 images per class. The size of images range from (198 × 148) to (537 ×

672) pixels.

Table 2 presents the experimental results considering MAP as score. We

can observe a positive gain for all color descriptors ranging from +4.50% to

+15.33%.

5.2.3. Texture Descriptors

The experiments consider three well-known texture descriptors: Local

Binary Patterns (LBP) [22], Color Co-Occurrence Matrix (CCOM) [16],

and Local Activity Spectrum (LAS) [38]. We used the Brodatz [6] dataset,

a popular dataset for texture descriptors evaluation. The Brodatz dataset is

composed of 111 different textures of size (512 × 512) pixels. Each texture

is divided into 16 blocks (128 × 128) pixels of non-overlapping sub images,
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Table 3: Bull’s eye score, MAP, and Accuracy retrieval scores for Reciprocal kNN

Graph in rank aggregation tasks considering Shape Descriptors on the MPEG-7 dataset.

Descriptor Bull’s eye MAP Accuracy

score

CFD [25] 84.43% 80.71% 75.59%

ASC [19] 88.39% 85.28% 80.66%

AIR [10] 93.67% 89.39% 88.17%

CFD+ASC 99.83% 99.24% 98.61%

CFD+AIR 100.00% 100.00% 100.00%

ASC+AIR 99.98% 99.93% 99.88%

such that 1776 images are considered.

Table 2 presents the experimental results considering MAP as score. We

can observe a positive gain for all texture descriptors ranging from +3.85%

to +15.16%.

5.3. Experiment 3: Rank Aggregation Evaluation

We evaluate the use of Reciprocal kNN Graph method to combine dif-

ferent CBIR descriptors. We selected three shape descriptors with highest

retrieval scores in re-ranking tasks and evaluated the different combinations

between them. Table 3 presents the rank aggregation results. Besides MAP

scores, we also present the accuracy and the bull’s eye score on the MPEG-

7 dataset. Notice that the combination of CFD [25]+AIR [10] presents

retrieval scores of 100% for the three considered measures, which means

perfect retrieval results.

We also selected two color and texture descriptors, with the highest

MAP scores in re-ranking tasks. Table 4 presents results of MAP score of
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Table 4: MAP scores for Reciprocal kNN Graph in rank aggregation tasks for color

and texture descriptors.

Descriptor Type Dataset Score

(MAP)

ACC [12] Color Soccer 37.23%

BIC [35] Color Soccer 39.26%

BIC+ACC Color Soccer 43.24%

CCOM [16] Texture Brodatz 57.57%

LAS [38] Texture Brodatz 75.15%

LAS+CCOM Texture Brodatz 83.71%

these descriptors. We can observe that significant gains are obtained when

compared with the results of descriptors in isolation.

Figure 9 illustrates the Precision × Recall curves of two shape descriptors

in different situations: before and after applying the Reciprocal kNN Graph

algorithm, and after using it for rank aggregation. We can observe that

significant gains in terms of precision have been achieved, in special for the

rank aggregation task.

5.4. Experiment 4: Comparison with Other Approaches

Finally, we also evaluate our method in comparison with other state-of-

the-art post-processing methods. We use the MPEG-7 [17] dataset, with

the bull’s eye score, commonly used for post-processing methods evaluation

and comparison. Table 5 presents results of the proposed Reciprocal kNN

Graph algorithm in comparison with several other post-processing methods

recently proposed in the literature. Note that the results of Reciprocal kNN

Graph algorithm presents better effectiveness performance when compared
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Figure 9: Impact of Reciprocal kNN Graph algorithm for re-ranking and rank aggregation

tasks on MPEG-7 dataset.

to various recently proposed methods in re-ranking tasks. We report the

results of CFD [25] and AIR [10] descriptors, respectively the descriptors

that presented the highest gain and the highest bull’eyes score in re-ranking

tasks.

We also present results of Reciprocal kNN Graph in rank aggregation

tasks in comparison to other recently proposed methods. Note that the

Reciprocal kNN Graph applied to the combination of only two descriptors

CFD [25]+AIR [10] reached a perfect retrieval scores (considering MAP,

accuracy and the bull’s eye score), obtained by other state-of-the-art method

only combining three descriptors.

5.5. Experiment 5: Natural Image Retrieval
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Table 5: Post-processing methods comparison on the MPEG-7 dataset (bull’s eye score).

Algorithm Shape Bull’s eye

descriptor score

Shape Descriptors

DDGM [39] - 80.03%

CFD [25] - 84.43%

IDSC [18] - 85.40%

SC [4] - 86.80%

ASC [19] - 88.39%

AIR [10] - 93.67%

Post-Processing Methods

Graph Transduction [43] IDSC 91.00%

Locally Constrained Diffusion Process [44] IDSC 93.32%

Shortest Path Propagation [41] IDSC 93.35%

Mutual kNN Graph [15] IDSC 93.40%

Locally Constrained Diffusion Process [44] ASC 95.96%

Pairwise Recommendation [26] CFD 96.15%

Tensor Product Graph [45] ASC 96.47%

Reciprocal kNN Graph CFD 96.49%

Co-Transduction [3] IDSC+DDGM 97.31%

Co-Transduction [3] SC+DDGM 97.45%

Self-Smoothing Operator [14] SC+IDSC 97.64%

Co-Transduction [3] SC+IDSC 97.72%

Self-Smoothing Operator [14] SC+IDSC+DDGM 99.20%

Pairwise Recommendation [26] CFD+IDSC 99.52%

Reciprocal kNN Graph AIR 99.94%

Tensor Product Graph [45] AIR 99.99%

Cross Diffusion Process [40] SC+IDSC+DDGM 100%

Reciprocal kNN Graph AIR+CFD 100%

The University of Kentucky Recognition Benchmark [21] (“UKBench”),

also referred as Nister and Stewenius (N-S) Dataset, has a total of 10,200

images. The dataset is composed of 2,550 objects or scenes, where each

object/scene is captured 4 times from different viewpoints, distances and
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illumination conditions. Thus, it consists of 2,550 image classes, and each

class has only 4 images. For evaluation purposes, each image is used as

query and the N-S retrieval score between 1 and 4 is computed. The score

corresponds to the number of relevant images among the first four image

returned (the highest achievable score is 4, indicating that all similar im-

ages are retrieved at top positions). Due to the small number of images

in each class, the N-S dataset is a very challenging dataset especially for

unsupervised learning approaches.

In the following, we describe several experiments conducted aiming at

evaluating the Reciprocal kNN Graph on N-S Dataset. For all experiments,

we use the same parameters used for other datasets, except for k = 5, due

to small number of similar images. The experiments consider nine descrip-

tors1, exploiting several features as color, texture and local features. In the

following, we briefly describe the descriptors based on considered features:

• Color: Auto Color Correlograms (ACC) [12], Border/Interior Pixel

Classification (BIC) [35], Local Color Histogram (LCH) [37].

• Color and Texture: Color and Edge Directivity Descriptor (CEED) [7],

Fuzzy Color and Texture Histogram (FCTH) [8], Joint Composite De-

scriptor (JCD) [46].

• Local: Scale-Invariant Feature Transform (SIFT) [20], considering the

number of matches between images as a similarity score2.

1We used the LIRE implementation (http://www.semanticmetadata.net/lire/) of

descriptors ACC [12], CEED [7], FCTH [8], and JCD [46].
2We considered resized dataset images of 160 × 120 pixels and a public available

implementation at http://www.cs.ubc.ca/~lowe/keypoints.
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• Bag of visual words: Several configurations of descriptors based

on visual words were evaluated3. The results presented in this sec-

tion consider only the best configurations, which are: sparse sampling

(Harris-Laplace detector), OpponentSIFT [33], codebook of 1,000 vi-

sual words, soft assignment (σ = 150) and spatial pooling WSA (Word

Spatial Arrangement) [27, 28], using threshold for soft assignment as

0.01 and the distance function presented in [27].

• Holistic: GIST [23], a scene recognition descriptor based on the Spa-

tial Envelope low dimensional representation 4.

Table 6 presents the experimental results considering the N-S score for

all considered descriptors on re-ranking tasks. We can observe positive gains

for all descriptors ranging from +3.30% to +15.35%. Table 6 also presents

the experimental results for Reciprocal kNN Graph considering rank aggre-

gation tasks. We consider for the combination the three descriptors which

have obtained the best scores in the re-ranking tasks (ACC [12], BIC [35],

SIFT [20]). We compute the gain considering the highest score obtained by

descriptors considered in the combination. We can observe that the com-

bination of ACC [12]+SIFT [20] present a very high score (N-S=3.79) and

BIC [35]+SIFT [20] a very high gain (+18.42%).

3We varied the low-level feature extraction using sparse and dense sampling, and using

SIFT [20] and OpponentSIFT [33]. Different codebook sizes were evaluated, varying from

100 to 50,000 visual words. Hard and soft assignment [9] were also used, and we tested

average and max pooling [5] and a spatial pooling approach called WSA (word spatial

arrangement) [27].
4We considered resized dataset images of 256 × 256 pixels and a public available C

implementation at http://lear.inrialpes.fr/software.
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Table 6: Reciprocal kNN Graph evaluation for various descriptors on the N-S Dataset.

Descriptor N-S Reciprocal Gain

Score kNN Graph

GIST [23] 2.18 2.28 +4.59%

LCH [37] 2.25 2.41 +7.11%

WSA [27] 2.28 2.59 +13.60%

CEED [7] 2.61 2.74 +4.98%

FCTH [8] 2.73 2.82 +3.30%

JCD [46] 2.79 2.91 +4.30%

SIFT [20] 2.54 2.93 +15.35%

BIC [35] 3.04 3.20 +5.26%

ACC [12] 3.36 3.58 +6.55%

ACC [12]+BIC [35] - 3.55 +5.65%

ACC [12]+SIFT [20] - 3.79 +12.80%

BIC [35]+SIFT [20] - 3.60 +18.42%
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Table 7: Comparison of N-S scores on the N-S dataset considering the best scores obtained

by recent retrieval methods and fusion approaches.

Jégou Qin Wang Zhang Reciprocal

et al. [13] et al. [29] et al. [40] et al. [47] kNN Graph

3.68 3.67 3.68 3.77 3.79

We also compare the Reciprocal kNN Graph with state-of-the-art meth-

ods recently proposed on the N-S dataset. Table 7 presents the best N-S

scores obtained by Reciprocal kNN Graph and reported by the recent re-

trieval methods and fusion approaches. We can observe that the Reciprocal

kNN Graph presents the highest N-S score when compared with other ap-

proaches.

5.6. Experiment 6: Efficiency Analysis

In this Section, we present the run time for the Reciprocal kNN Graph

on the N-S dataset, considering the four descriptors which have presented

the highest retrieval scores (ACC [12], BIC [35], SIFT [20], JCD [46]). We

use a serial C implementation running over Linux on an Intel Xeon 2.40

GHz processor. Figure 10 presents the total run time and the run time per

iteration for the four considered descriptors. The ACC [12] descriptor, for

example, converged after only 3 iterations, with a total run time of 8.3 s.

The average time required for the re-ranking of each image in this case is

only 8.1 ms.

6. Conclusions

In this work, we have presented a novel re-ranking and rank aggregation

approach that exploits the Reciprocal kNN Graph for improving image re-

trieval tasks. The main idea consists in analyzing the reciprocal references
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Figure 10: Run time of Reciprocal kNN Graph for the N-S Dataset.

at top positions of ranked lists for performing re-ranking and rank aggre-

gation tasks. The Reciprocal kNN Graph algorithm iteratively propagates

the similarity along the dataset structure by taking into account intrinsic

geometry of the dataset manifold.

We conducted a large set of experiments considering different descrip-

tors and datasets. Experimental results demonstrated the applicability of

our method to several image retrieval tasks based on shape, color, and tex-

ture descriptors. In re-ranking tasks, for example, the Reciprocal kNN Graph

algorithm achieves gains up to +37.99% considering MAP scores. Our pro-

posed approach also achieves very high effectiveness performance when com-

pared with recent state-of-the-art methods on well-known datasets.

Future work focuses on optimizing the proposed re-ranking and rank

aggregation methods by considering parallel architectures.
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