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Abstract

In this paper, we explore mid-level image representations for real-time heart view plane classification

of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words,

successfully used by the computer vision community in visual recognition problems. An important

element of the proposed representations is the image sampling with large regions, drastically reducing

the execution time of the image characterization procedure. Throughout an extensive set of experiments,

we evaluate the proposed approach against different image descriptors for classifying four heart view

planes. The results show that our approach is effective and efficient for the target problem, making

it suitable for use in real-time setups. The proposed representations are also robust to different image

transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping

classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases.

This paper also includes an in-depth review of the literature in the area of automatic echocardiogram

view classification giving the reader a through comprehension of this field of study.
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1. Introduction

Echocardiography plays an important role aiding cardiologists in heart analysis. It relies on the use

of ultrasonic techniques that can capture information about the heart of a patient. The heart ultrasound

images provide information about different anatomical aspects of the heart structures such as the position,

size, and shape of the atrium and ventricles, and how they move. In an echocardiogram examination,

the operator of an ultrasound device uses a probe to capture the heart images of a patient. Ultrasound
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devices capture “slices” of the heart, which are commonly named heart views. Those views depend on the

position of the probe in the patient and the most common views are the parasternal long axis, parasternal

short axis, and apical views. In each view, different heart structures can be observed and analyzed.

Automatic classification of echocardiogram ultrasound images has been studied recently in several

aspects [1–10]. The most common task is the automatic classification of echo videos into the different

heart views. The automatic classification has several applications. During an ongoing examination,

automatically classifying the heart views under analysis makes it possible to label the images/videos as

they are recorded, providing a facility for organization and management of echocardiogram videos. It

can also help the operator for better probe positioning and even for training of new specialists. Knowing

the heart view plane, even after the examination, can make it possible the retrieval and analysis of

examinations according to the heart view [11, 12]. Other possible use is when taking heart measures [13],

like blood volume and size of cavities, which usually requires a previous manual indication of the heart

view. Therefore, there are two main scenarios where the automatic recognition of heart views can be

used: the first includes the categorization of pre-stored echo videos while the second aims at the real-

time view classification, whereby the view categorization is performed during an examination. Efficiency

constraints are not as important for the former as they are for the latter.

The main approaches used for automatic view plane classification of echocardiograms are based on

extracting features from heart images (echo video frames) and using a machine learning scheme for

learning and then predicting the view of a test echo video or image [1, 3, 4, 6–9]. For feature extraction,

some works point out that the direct use of traditional image descriptors usually employed for object

and scene recognition may fail in the ultrasound scenario [6]. However, in the literature review that

we present in the paper, we could notice a trend for using generic features for heart view classification,

like GIST [8] and HOG [7]. In the current work, we show that despite the noise and contrast issues

of ultrasound images, some traditional image representation approaches can be effectively used. Our

proposed approach is based on the use of bags of visual words (mid-level features), which are widely used

in the computer vision community for visual recognition [14–16].

We show experimentally on a dataset of more than 7,500 frames (in 52 echo videos, captured by

a device used in multiple configurations) how different descriptors perform. Considering the real-time

requirement, we also evaluate the descriptors in resized versions of the dataset. An additional evalua-

tion is also performed considering the use of noise filtering procedures. On top of that, we also show

how the proposed mid-level representations perform with different machine learning classifiers (Support

Vector Machines and Random Forests). We show that the proposed approach is robust to any of those

transformations and to the different classifiers, being suitable for use under several different conditions.

The main contribution of this paper is the proposal of an efficient and effective approach for heart view

classification that can be used both for pre-stored echo videos and for real-time applications. Another
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differential aspects of the paper are an evaluation of several image representation schemes for automatic

classification of echocardiogram images/videos and an in-depth review of the literature detailing the main

advances in the heart view classification task and contrasting the pros and cons of each approach.

Section 2 discusses approaches employed in the literature for automatic heart view classification, as

well as existing image descriptors and the machine learning classifiers used in this paper. Section 3

introduces our proposed approach while Section 4 shows the experiments and the obtained results.

Finally, Section 5 concludes the paper and delineates possible future work.

2. Related work

This section presents the advances in the literature of automatic view classification of echocardio-

grams. We also show a review of image descriptors in Section 2.2, which we used as baselines for our

proposed approach in the experimental section. For details about echocardiography and the clinical heart

view categorization, please refer to [17]. In Section 2.3, we also show a brief review of machine learning

classifiers.

2.1. Literature review of heart view plane classification

Table 1 summarizes the related work analyzed in greater details throughout this section. We show

their pros and cons and present a summarized description of the approaches, the datasets and devices

used, and the obtained results. In Table 1, we show only the information that was available by analyzing

the papers where each approach was proposed. For instance, if we do not show the device used for

capturing images or the time required for the method to run, it is because such information was not

available.

Ebadollahi et al. [1] are among the first works to deal with view classification of echocardiograms.

They point out that the spatial arrangement of the heart cavities is unique to each view and propose

the use of constellation models for differentiating views. For classifying an echo video, energy vectors in

relation to the models of each view are used with a multiclass SVM classifier. In a leave-one-out protocol,

abnormal cases were used only for testing while normal ones were used also for training. If the chamber

detector fails, their performance drops significantly.

Aschkenasy et al. [2] used multi-resolution spline filtering, where each image was classified indepen-

dently by minimizing the mean absolute deviation (MAD) between two images. Elastic deformation and

the deformation energy was used with linear discriminant analysis (LDA). Their dataset is composed of

consecutive echocardiographic images recorded during daily clinical works (with different sonographers).

Otey et al. [3] used a hierarchical approach for classifying four heart views. They first differentiate

between parasternal and apical views. For parasternal, they then classify as long or short axis. For
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apical, they further classify as two or four chambers. For feature extraction, they consider only pixels

inside a mask (learned on training images) covering the fan area.

Zhou et al. [18] presented an approach based on multiple object detection. They manually defined

templates based on the left ventricle (LV) orientation and size, which were used to align the data and

reduce appearance variation. The ED frame and its LV annotation were used to crop the template region.

Classification is determined combining the results of all scanned subwindows on the ED frame. Their

approach is almost real-time, taking about 1.5s to classify a sequence containing a full cardiac cycle

(about 30 frames).

Park et al. [4] trained a LV detector for each of the four views considered. Their classification

system performs: LV detection, global view classification using four multi-view classifiers, and final view

classification by integrating the classification results. Their approach has the advantage of computing

measures about the LV, providing feedback to the sonographer for probe adjustment. However, the

system can fail if no LV is detected.

Roy et al. [19] classified echocardiogram videos in different levels of precision: views, states, and

substates. Only a region of interest (ROI) automatically marked by their system is considered in each

frame. Given a view sequence, they randomly selected five frames and classify each of them. Majority

voting is used to classify the sequence. Their system is also able to classify heart states (systolic, diastolic)

and substates (isovolumetric contraction, ejection, isovolumetric relaxation, rapid inflow/diastasis, fully

expanded).

Snare et al. [5] used non-uniform rational B-spline (NURBS) and an extended Kalman filter to classify

three apical views. They created models based on the heart structures present in each of the desired

views. Classification considered a score measure based on the detection of each structure. Their system

fails if the heart structure is not detected or if it is falsely detected.

Kumar et al. [6] used a spatiotemporal feature (fusing motion and intensity information) for classifying

four and eight heart views. Videos are initially aligned, then motion information is extracted, and finally

scale-invariant features are obtained from the motion images. Videos are classified according to a majority

voting scheme based on frames.

Agarwal et al. [7] used Histogram of Oriented Gradients (HOG) [20] for classifying two heart views.

They converted images onto polar coordinates and resized them to 124×64 pixels. HOG features were

extracted from four non-overlapping blocks of each image, quantized into 18 orientation bins for each

block, and concatenated to form a 72-d vector for each image. SVM was then used in cross-validation

protocols.

Wu et al. [8] presented an incremental classification scheme for differentiating eight heart views. They

used GIST [21] for feature extraction in images divided into 4×4 blocks, creating a 384-d vector for each
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image. Multiclass SVM is used incrementally: if the class probability is above a threshold, classification

is finished, otherwise, the next frame is used to construct a new feature as the convex sum of the kernels.

Qian et al. [9] employed bag of visual words (BoVW) based on spatiotemporal features. 3D SIFT is

extracted in regions detected by a cuboid detector. Sparse coding is used in a codebook of 4,000 visual

words. The echocardiogram volume is split into 12 regions and, for each region, max pooling is used to

compute the final video feature vector of 48,000 dimensions (4,000×12).

2.2. Image descriptors

We have used several texture and shape descriptors as baselines which have shown good results for

texture representation [22] or which have already been used for ultrasound image representation [7, 8] in

the literature. Many of the descriptors below were never used for heart view classification.

SASI. Statistical Analysis of Structural Information (SASI) [23] is based on a set of sliding windows,

which are covered in different ways. SASI was chosen due to its good ability for texture discrimination

in [22].

LAS. Local Activity Spectrum (LAS) [24] captures the spatial activity of a texture in the horizontal,

vertical, diagonal, and anti-diagonal directions separately. It presented good results in the experiments

of [22] in terms of both effectiveness and efficiency.

Unser. Unser [25] extracts information similarly to a gray-level co-occurrence matrix. It computes

histograms of sums and differences between neighboring pixels. We chose it because of its efficiency and

compact representation [25].

GIST. GIST [21] provides a global holistic description representing the dominant spatial structure of a

scene. GIST is popularly used for scene representation [26] and was successfully used by Wu et al. [8]

for heart view classification.

HOG. Histogram of Oriented Gradients (HOG) [20] computes histograms of gradient orientations in

each position of a sliding window. HOG was used by Agarwal et al. [7] for heart view classification. The

most usual window size for HOG is of 8 × 8 pixels. Here, however, we have used a window of size 80 ×

80 pixels in order to control the size of the final feature vector to about 2,000 dimensions. Different sizes

were considered but without significant difference.

BoVW. Bag-of-Visual-Words (BoVW) descriptors compute statistics about the occurrences of texture

patterns, based on quantized local features. BoVW descriptors are the basis for our proposed approach

(see Section 3), however, the ones used as baselines are based on sparse sampling. The proposed approach

uses dense sampling with large regions.
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Sparse sampling refers to the use of interest-point detectors such as the Harris-Laplace detector [27].

Those kinds of detectors analyze the image for finding regions with high differences of contrast (e.g., edges

and corners). As low contrast and noise are usually problems of ultrasound images, those detectors could

provide poor performances for heart view classification. However, in the experiments, we show that some

configurations of BoVW descriptors based on sparse sampling are very accurate (obtain classification

accuracy above 90%).

BoVW descriptors are used in some related works [9], but not in the same way we are using here.

In [9], their BoVW descriptors consider motion information.

Our implementation of the BoVW descriptors used as baselines follows most of the configurations

evaluated for the proposed approach. However, for pooling, besides testing average and max pooling [15],

combined or not with spatial pyramids (SPM) [28], we also tested WSA (word spatial arrangement) [29],

a spatial pooling approach which was proposed for sparse-sampling cases. WSA encodes the relative

spatial position of visual words in the image space, not encoding the frequency of occurrence of visual

words. Thus, only spatial information is taken into account by WSA.

In Table 2, we show the dimensionality of each descriptor.

2.3. Machine learning classifiers

In a typical classification setting, we receive a set of training vectors x1, . . . ,xn ∈ Rd, each belonging

to one of two classes, denoted by the respective labels y1, . . . , yn ∈ {−1,+1}. The task is then to find a

function f : Rd → {−1,+1} that accurately predicts the label when presented with a new sample xt [30].

In the classification context, Support Vector Machines (SVMs) have been used in many different

problems including in some previous work related for heart view classification of echocardiograms [1, 3, 6–

9]. SVM’s idea is to find the maximum-margin hyperplane (w, b) in a high-dimensional space H that

accurately separates the positive instances from the negative ones. Given a separating hyperplane (w, b),

the support vector classifier is given by

fw,b(x) = sgn(〈w,Ψ(x)〉+ b),

where Ψ : Rd → H is a kernel function that transforms the input data onto a high-dimensional fea-

ture space, and b is a parameter that indicates the offset of w with respect to the origin of H. The

transformation Ψ is implicitly defined by a kernel function, so that 〈Ψ(a),Ψ(b)〉 = K(a, b).

Although there are different formulations for SVM, here we consider the standard formulation (C-
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SVM). This algorithm finds w and b by solving the following quadratic problem:

minimize
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi.

subject to yi(〈Ψ(xi),w〉+ b) ≥ 1− ξi,

ξi ≥ 0,

(1)

where ξi with i = 1, . . . , n, are slack variables and C ≥ 0 is a parameter that balances the amount of

slack (misclassifications) and the size of the margin.

For multiclass classification, multiple binary SVM classifiers are used considering the one-vs-one

(OVO), one-vs-all (OVA) or different combination approaches. In our work, we use the SVM imple-

mentation of libSVM [31] in its basic form, which consists in a one-vs-one approach by training a linear

binary SVM classifier for each pair of training classes. Then, in prediction phase, a voting scheme is used

and the predicted class is the one which receives the majority of votes.

Although SVMs have presented good results for different applications thus far, recent studies point

that Random Forest classifiers are most likely to perform equally well or even better for many situa-

tions [32].

Random forest is a machine learning classifier that relies upon an ensemble of simple decision tree

classifiers assuring that each Decision Tree does not overfit the training set. Its two most important

features are the use of the out-of-bag error as an estimate of the generalization error and the measuring

of variable importance through permutation. The random forest training procedure uses bootstrap

aggregation (bagging) to generate the different learners (trees). We start with a sample of training

vectors x1, . . . ,xn ∈ Rd with responses y1, . . . , yn ∈ R, and repeatedly select a random sample with

replacement of the training (referred to as Xb ⊂ X,Yb ⊂ Y ). Afterwards, we fit K trees to these samples

and perform majority voting in the end for pointing out the most likely class of an input example xt.

The number of trees K is a free parameter.

A random forest slightly differs from this original bagging formulation by one aspect: it uses a modified

tree learning algorithm that selects, at each tree creation procedure in the learning process, a random

subset of the features. We refer to this process as “feature bagging.” Typically, we create each tree

by sampling
√
d features. In our work, we use the random forest implementation of R, which is also

recommended by [32].

Given their historical good performance for different problems, here we decided to evaluate the SVM

and Random Forest classifiers with the proposed mid-level representations. As they rely on different

rationales (SVMs are margin-based classifiers while Random Forests are based on bootstrap aggregation
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and random sampling), the classification performance when using the proposed descriptors may vary

depending on the classifier.

3. Proposed approach

This section describes the proposed approach for real-time heart view classification of echocardiogram

ultrasound images.1 The approach comprises mid-level representations based on the widely used visual

dictionary model, describing images by statistical information of visual word occurrences (bags of visual

words – BoVW).

Figure 1 shows the proposed approach’s scheme. More specifically, Figure 1(b) shows BoVW vector

computation, which constitutes of dense sampling with large regions, region description with a local

invariant descriptor, coding, and pooling. Next, we describe each of these steps.

3.1. Dense sampling

Dense sampling is an approach for detecting regions of interest in images without looking at their

content. Figure 2 shows two common ways for dense sampling an image. We decided to use dense

sampling specially because of its simplicity and its capability of detecting interest points in every region

of an image. Even in cases of low contrast, an issue that potentially occurs in ultrasound images and

directly affects interest-point detectors [33], dense sampling detects regions to be characterized.

As we show in Section 4.3, we tested different scales for the sampled regions and the best results

were obtained by large representative regions (low dense), resulting in images being sampled by very few

regions. That is an important solution for real-time applications: the fewer the regions, the shorter the

processing time. The use of large regions is better probably because the heart views considered herein are

different globally (see Figure 3 and Section 4.1). Another interesting aspect of using large regions refers

to the fact that those regions sometimes comprise whole heart structures, e.g., atrium and ventricles.

As our dense sampling implementation relies on the software of van de Sande et al. [14], the selected

regions during sampling are overlapped Gaussian circles (more importance for central pixels, less for

peripherals). According to the documentation of the referred software, the scale parameter for the circles

corresponds to the Gaussian filter sigma. The dense sampling obtains N regions from an input image.

3.2. Local description

Given the N regions obtained by dense sampling, we use a local invariant image descriptor to charac-

terize each of them capturing the most important cues they have. This results in a set of feature vectors

X = {xi} per image, where xi ∈ Rd, i ∈ {1..N}, and d is the feature vector dimensionality.

1The method proposed herein is patent pending under the application number BPO BR 10 2014 011059 3 filed on May
7th, 2014: “Método para Classificação Automática de Visões do Coração a Partir de Ecocardiogramas”.
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In our approach, we have used Scale Invariant Features Transform (SIFT) [34], as it is the most

popular descriptor used in similar cases nowadays. Although SIFT was used, we believe that the impact

of using similar descriptors, like Speeded Up Robust Features (SURF) [35] or others alike, is minimum.

3.3. Feature space quantization

When creating the visual dictionary, we quantize the Rd feature space, usually, using a subset of the

training feature vectors. The visual dictionary can be seen as a set of image regions which represent

important elements of the heart, which will be important for distinguishing the views. More formally, a

visual dictionary can be defined as C = {wi} where wi is the feature vector of visual word i, i ∈ {1..k},

and k is the dictionary size.

An effect of the quantization of the Rd feature space is the reduction of the specificity of the feature

vectors. The more quantized the space, the more generic the description. This is related to the dictionary

size: larger dictionaries mean less quantization, while smaller ones, more quantization.

By analyzing the ultrasound images visually, we could observe that even in their global aspect, they

differ among views. We can see this by looking at the average images of each view in Figure 3, Section 4.1,

for example. Therefore, more quantized spaces (smaller dictionaries) should be more promising, as they

provide a more general representation.

For implementing the feature space quantization, clustering techniques are usually employed, then

each cluster represents a visual word. K-means is commonly used, however, given the curse of dimen-

sionality, a simple random selection of vectors can provide dictionaries of similar quality [36, 37] at much

lower cost. On one hand, for high-dimensional feature spaces, k-means is not recommended as it is more

expensive. On the other hand, in cases of small dictionaries (less than 500 visual words), the random

selection of points can be deficient, as there is a greater chance of selecting points only from one specific

area of the feature space. For larger dictionaries, this chance is smaller. Thus, to avoid this effect, it is

recommended the use of k-means for small dictionaries. In our implementation, we have used a simple

random selection of points in the feature space, even for small dictionaries, as it is much more efficient.

In those cases (small dictionaries), different random dictionaries may provide different representation

qualities.

3.4. Coding and pooling

After creating the dictionary C, the description set X of the regions of interest of an image must be

encoded appropriately in the quantized space. One can simply assign to each feature vector the id of

the visual word (cluster) where it falls in the quantized feature space (hard assignment). However, in

high-dimensional spaces, points tend to be in the frontier of several clusters (codeword uncertainty [16]),

thus, ignoring the neighboring clusters of a point discards information about the region description. Soft
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assignment is usually used in such cases [16, 38, 39]. This coding scheme considers neighboring clusters of

a given feature vector in the quantized feature space and is more robust to the effects of poor quantization

steps and to large dictionaries. We implemented the codeword uncertainty scheme proposed in [16] to

obtain the coding vector αi,j for a region i ∈ {1..N}:

αi,j =
Kσ(D(vi, wj))∑k
l=1Kσ(D(vi, wl))

, (2)

where j ∈ {1..k}, vi is the feature vector of the i-th region, wj is the vector corresponding to the j-th

visual word, Kσ(x) = 1√
2π×σ × exp(−

1
2
x2

σ2 ), and D(a, b) is the distance between vectors a and b. The σ

parameter indicates the variance of the Gaussian function: the higher the value, the larger the number

of neighboring clusters considered. In our experiments, we have used σ = 60 and the Euclidean distance

for D(a, b).

The i-th image region is represented by a k-dimensional coding vector αi,j , j ∈ {1..k}. Thus each

image has N coding vectors.

The coding vectors are finally pooled into a single feature vector h representing the image [15]. One

can pool by summing all the visual word activations in the image and normalizing by the number of

points in the image (average pooling). Another alternative, with better results in the literature of image

classification, is max pooling [15]. Max pooling considers only the maximum activation of each visual

word in the image and can be defined as [15]:

hj = max
i∈N

αi,j (3)

where αi,j is obtained in the coding step (by Equation 2), N is the number of regions in the image, and

j ∈ {1..k}.

Therefore, the final image feature vector h has dimensionality k and has statistical information about

the visual word occurrences in the image. For instance, if h is generated by max pooling, h has the

maximum activation of each visual word in the image. Considering that we are using large regions in

the dense sampling and so in the visual codebook, our final feature vector h approximately corresponds

to the activations of heart structures in each image. This can give us a “higher-level” representation of

the echo frames.

The use of spatial pooling approaches is also interesting for enriching the representation [29, 28].

Spatial Pyramids (SPM) [28] are commonly used for that. They are based on hierarchically splitting

the image into rectangular regions and by computing one BoVW for each region. At the end, BoVW

are weighted and concatenated to form the image feature vector h. Spatial Pyramids are very simple to

compute and they can be used with other pooling strategies, like average and max pooling. However,
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the feature vector is significantly larger than the ones computed by non-spatial pooling approaches. For

instance, for a pyramid level of 2, the feature vector is 21 times larger than a vector resulting from a

simple max pooling. The impact of larger feature vectors (higher dimensional spaces) is an increase in

learning and classification times.

In our approach, as we use large regions in the dense sampling, the impact of Spatial Pyramids is

small. However, for denser sampling, Spatial Pyramids are crucial for higher accuracies, specially when

used with max pooling.

4. Experiments

In this section, we evaluate the proposed approach in terms of effectiveness and efficiency, comparing

it with existing image descriptors. We start by presenting the dataset and the classification protocol used.

Then, we present the evaluation of two important elements of the proposed approach: the dense sampling

region size and the codebook size. Next, we show the comparison of our mid-level representations with

the baselines presented in Section 2.2 using the images as they were acquired by the ultrasound device.

Additional experiments were performed in resized versions of the dataset, aiming at reducing the feature

extraction time and evaluating the robustness of the methods to such transformations. We then show

experiments considering the use of noise filtering aiming to explore whether or not noise significantly

influences the classification process. And finally, we show experiments evaluating different machine

learning classifiers.

4.1. Dataset

The dataset used in our experiments is composed of 52 transthoracic (TTE) echo videos comprising

7, 527 frames in BMP format with resolution of 832 × 540 pixels (mostly healthy adult hearts). The

following heart views are used: parasternal long axis (PLA), parasternal short axis mid – left ventricle

(PSA MID), apical two-chamber (A2C), apical four-chamber (A4C). Each video refers to only one view.

The images in the dataset were captured by a Samsung Medison EKO 7 device in different configurations

using a phased array transducer in B-mode (no dopler). Most of the images were obtained using the

Cardiology configuration while others use the Emergency Room (ER) configuration. ER images are

usually inferior to Cardiology but there is no fundamental difference between them. We observed the

following differences among the echo videos:

• misalignment of the fan area (wider or narrower areas and small rotation),

• differences in contrast and in noise patterns,

• and differences in color tone (grayish and yellowish aspects).
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Fig. 3 presents the number of videos and images of each view, as well as their average images. We

can see that the views are visually different, even considering their global aspect. We have also analyzed

the differences among the videos of each view. Fig. 4 shows the average images of the seven videos from

view A2C. We can see that, although there is a common visual pattern in all images, the edges and other

structures have a large variation.

4.2. Classification protocol

All the frames of one echo video per view are used for testing (i.e., one video per view for testing).

For the remaining frames (i.e., the frames of the training videos), we randomly selected nTrain frames

per view for training (independent of the video). This guarantee a balanced training set. As we are

evaluating four views, we will always have 4 × nTrain frames for training. We varied nTrain from 5

to 1, 000 frames. Given the random parts of the protocol, everything is run 100 times and the average

classification accuracies are considered, as well as the confidence intervals (95% of confidence) based on

the 100 runs. In each run i, we compute the accuracy per class c as accci = X
Y , where X is the number

of correctly classified samples of class c and Y is the total number of samples of class c in the test set.

The average accuracy for run i is then computed as acci =
∑Nc

c=1 acc
c
i

Nc
, where Nc is the number of classes.

Then, the average accuracy among the 100 runs is computed Accavg =
∑100

i=1 acci
100 .

We used Support Vector Machines (SVMs) with the linear kernel (C = 1.0). The times were measured

in a desktop computer with Intel i7-3770 CPU@3.40GHz with 8GB of memory. For low-level feature

extraction of BoVW descriptors, we used the software from van de Sande et al. [14] version 4.0, which

uses parallelization but we did not use the GPU implementation. Other steps of the BoVW computation

were implemented in C. The global descriptors SASI, LAS, and Unser were implemented in C according

to [22]. GIST implementation is the one used in [26] with the parameters discussed therein.2 HOG

implementation came from VLFeat [40].

We decided to classify images instead of videos, because, in a real-time scenario, we should be able

to classify an ongoing examination on-the-fly, that is, we cannot wait to have the complete video for

performing the classification. We know that even in that case, we could use motion information to help

classification, but we decided to work only with static information from isolated frames.

4.3. Evaluation of dense sampling region size

One important parameter of the proposed approach is the size of the dense sampling region. As we

explained in Section 3.1, the use of large regions obtained the best results. To show more precisely the

impact of the region size in dense sampling, we evaluated regions varying in 6, 12, 25, 50, 80, 100, 120,

2http://lear.inrialpes.fr/software (as of October 22th, 2014).
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and 150 pixels of radius. For the smaller regions, we had also to be worried about the regions completely

out of the fan area in the ultrasound images. In such cases, we had to remove the black regions after dense

sampling. To also avoid cross effects related to dictionary size and pooling, we considered dictionaries of

100 and 1000 visual words as well as avg and max pooling.

Another important aspect related to the region size is the feature extraction time. Therefore, we also

measured the extraction time per image.

Results are presented in Fig. 5. We can see in Fig. 5(a) that the highest accuracies are obtained for

the size of 120 pixels, which is very large in comparison to the image size, resulting in very few regions

detected per image. In Fig. 5(b), we note that as the region size increases, the extraction time decreases

very fast. For regions larger than 100 pixels, the extraction time is below 0.2 seconds per image.

As a conclusion, the best region size for dense sampling in the proposed approach is 120 pixels,

resulting in very few regions per image. Such large regions may comprise whole heart structures, as we

show in Fig. 6. In Section 4.5.2, we show how to define the region size based on the resolution of the

input image.

4.4. Evaluation of codebook size

Choosing the appropriate visual dictionary size is a key challenge for BoVW-based approaches. We

evaluate this factor both for our proposed BoVW configuration based on low dense sampling and for the

BoVW based on sparse sampling.

Fig. 7 presents the average classification accuracies of 100 runs of the classification protocol comparing

the results for each pooling method when several different sizes are used for the codebook. Fig. 7(a) has

the results for our proposed BoVW descriptors. We can see that the best codebook size has around

100 and 200 visual words, independently of the pooling method, and the differences are statistically

insignificant or very small comparing to the other sizes (except for 1000 visual words, which is worse).

The analysis considered the intersection or not of confidence intervals. This is a good behavior, because

we can keep the representation more compact without significant loss of accuracy.

In Fig. 7(b), contrasting to the behavior of our proposed BoVW, we can see that the BoVW descriptors

based on sparse sampling have different behaviors depending on the pooling strategy used. Average

pooling and its version with spatial pyramids (avgSPM), for instance, are better with smaller codebooks.

AvgSPM, in fact gets worse as the codebook increases. This is the opposite behavior of max pooling,

which gets better with more visual words. MaxSPM, however, stabilizes with more than 100 visual

words. WSA has similar results, independently of the codebook size.

Considering efficiency, we decided to not evaluate the BoVW descriptors based on sparse sampling in

larger dictionaries, as this impacts in the classification time.

The results presented in the following sections consider our proposed method using a codebook of
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100 visual words. BoVW descriptors based on sparse sampling are used with both 100 and 1,000 visual

words, depending on the pooling method used: avg, avgSPM, and WSA with 100 visual words, and max

and maxSPM with 1,000.

4.5. Results

We first show the results of the descriptors in the original dataset (images as they were acquired by

the ultrasound device). Next, we show the results after downsampling and after noise filtering. And then,

we show how the proposed descriptors perform with different machine learning classifiers. We selected

only the best training set size (nTrain) for each descriptor to show here. In many cases, increasing the

training set size (nTrain > 100) does not represent considerable increase in accuracy.

To clarify the differences between the several parameters of the BoVW descriptors that were evaluated,

we use the following acronyms for them: P sk , where P refers to the pooling strategy (average [avg], max,

average or max with spatial pyramids [avgSPM, maxSPM], and WSA), s is the sampling scheme (sparse

[S] or dense [D]), and k is the codebook size. For example, maxSPMD60
100 refers to a BoVW based on max

pooling with spatial pyramids on a codebook of 100 visual words which were obtained from quantized

dense features (60 pixels of radius for each region).

4.5.1. Original dataset

The results presented in Fig. 8 show that our proposed approach (represented by F) is at the same

time effective and efficient. Feature extraction of an image can be performed in 0.17 seconds, and average

accuracy is above 92%. Sparse sampling BoVW descriptors (� and D) are also very effective, but they are

computationally slower (more than 5 seconds). Some global descriptors (◦) are very fast (Unser 0.04s,

LAS 0.05s, HOG 0.05s), but their accuracy is low. Results here consider SVM as classifiers.

We also performed a statistical analysis to verify the differences in classification accuracy of all the

descriptors tested. For the statistical tests, we used the Pairwise Wilcoxon Rank Sum Test, which

calculates comparisons between group levels with corrections of p-values for multiple testing. We used

the Bonferroni correction of p-values. Each comparison of two methods considers 100 runs (executions)

with different training/testing sets. In Table 3, an arrow indicates a p-value lower than 0.05 (95%

confidence level) and it points in the direction of the best method when comparing two methods (e.g.,

SASI outperforms LAS with statistical difference, p-value < 0.05).

The tests mainly show that: (1) the global-wise methods are worse than local ones as LAS, Unser,

GIST, and HOG methods are outperformed by the other methods and (2) the proposed mid-level rep-

resentations (BoVW low dense) are really effective as they outperform many counterparts (i.e., most of

the arrows are pointing to our BoVW methods).

Fig. 9 shows the average confusion matrices for the four pooling methods tested with our method.

We can see, for instance, that view A2C is rarely confused with other views. View A4C is sometimes

14



confused with PLA or PSA MID. PSA MID was the most difficult (confusion varies depending on the

pooling method), although its accuracy was close or above 90%. Spatial Pyramids increase the rate

for view PSA MID in relation to the pooling versions without them. The method maxSPMD120
100 , for

instance, has accuracy per class above or equal to 94%. A small confusion of around 3% happens between

classes A4C and PLA; and around 4% between classes A2C and PSA MID.

We also computed the receiver operating characteristic (ROC) curves for a random run of our approach

(not the average of 100 runs). The ROC curves can help understanding the errors when the approach is

applied in a real situation. As ROC curves are usually employed for binary problems, we computed one

ROC for each binary classifier (i.e., each combination of two classes at a time of the four-class problem

we deal with in this paper). This is possible to accomplish when using SVMs, for instance, which

naturally builds its multi-class predictions based on combinations of two class problems known in the

literature as class binarization [41]. The SVM implementation of libSVM we are using deploys such class

binarization by means of the one-vs-one approach, resulting in a binary classifier for each pair of training

classes. As our problem has four classes, we end up with six binary classifiers. Figure 10 shows the ROC

curves for each pooling method along with the corresponding confusion matrices. In each case, we also

computed the mean ROC curve of the six classifiers (black line) with its area under the curve (AUC).

We can see that, in some cases of the selected run, the errors are higher than the average case, such

as in the confusion matrices of avgD120
100 and avgSPMD120

100 (classes PLA and A4C) or maxSPMD120
100

(classes A2C and PSA MID). For instance, in the case of the large confusion between classes PLA and

A4C of avgSPMD120
100 , we believe that the reason is that the testing video has many frames with high

presence of noise, compromising the viewable structures that differentiate such views. However, the ROC

curves still have a high area under the curve showing the high effectiveness of the proposed classification

approach independent of any operation point chosen in the curve. The final classification may not be

directly viewable from the ROC curves of the intermediate binary classifiers, because the final classifier

decision depends on the majority voting of the individual binary classifiers. This is also interesting as

the OVO approach used in SVM also serves as an error correcting scheme for small mistakes done by

individual classifiers. For example, the binary classifier A4C-vs-PSA MID may confuse the samples of

these two classes, but when the samples of such classes are confronted with other classes in the other

binary classifiers, they are correctly classified. Thus, in the majority voting scheme of libSVM, the final

classification is not affected by some bad intermediate binary classifiers.

4.5.2. Image downsampling

Given that our dataset has images with relatively high resolution (832 × 540 pixels), one could argue

that we could perform some adjustments in the images before processing them. Therefore, we have

applied downsampling aiming at reducing the extraction times.
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Considering a video in 30 frames per second (fps) and a real-time classification system, we would

need to process 1 frame at each 0.033 seconds. For 60 fps videos, 1 frame should be processed at each

0,017 seconds. Aiming at reducing the extraction time for helping the descriptors to achieve real-time

performance, we performed image downsampling. It is worth noting that even the global descriptors were

not able to process one image in less than 0.033 seconds. BoVW based on sparse sampling, specially,

were very far from this real-time constraint.

For large-scale classification experiments, Perronnin et al. [42] suggested to resize images to have at

most 100 thousand (100K) pixels. Additionally to this image resolution, we also resized our images to

50K, 25K, 5K, and 1K pixels. Table 4 shows the downsampling schemes used and their corresponding

image resolutions. Table 4 also shows the size of the sampling region in our low-dense sampling scheme,

as it is adjusted according to the image resolution for keeping very few regions per image. We can observe

that the region size has around 15% of image width and around 23% of image height, resulting in at most

15 regions per image in our experiments. Therefore, if a dataset with different image resolutions is used

and resizing is not possible, one can check Table 4 to adjust the size of the sampling region according to

the image resolution.

We evaluated the image resize factor regarding both efficiency and effectiveness. Fig. 11 shows the

average accuracies for BoVW descriptors in the resized versions of the dataset. We can see that the

variation in accuracy is small when using the proposed BoVW descriptors based on low dense sampling.

However, there is more variation for BoVW descriptors based on sparse sampling. In the size of 5k,

for instance, where the images are very small, our BoVW method has average accuracy around 95%

(for both avg and max pooling). As we showed in Fig. 3 in Section 4.1, the heart views differ globally,

therefore, even when we resize the images and loose some details, their global aspects remain similar. The

removal of some details can also remove noise artifacts. In the case of BoVW based on sparse sampling,

avg pooling has a drop in accuracy from the size of 100k pixels, while max pooling presents a drop in

accuracy in the 1k size.

A remark about the results with the very tiny images (1k version): the Harris-Laplace detector

failed to detect points in 45 images. Such images were all from the PSA MID view and they had no

final representation. This is a problem for descriptors based on interest-point detectors. Our low dense

sampling scheme does not suffer from that. For the 1k version of the dataset, 13 regions were used per

image and, as we can see, they have a high discriminative power.

Table 5 shows the extraction times per image for each method. We are showing only the times for

low-level feature extraction, which considers only the time for image sampling and local description (it

does not include the time for creating the bag of visual words, which depends on coding and pooling).

The time for low-level feature extraction corresponds to most of the time for BoVW computation. In the

original images (450k), the time for low-level feature extraction corresponds to more than 97% with any
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of the pooling approaches when using our proposed method. For the BoVW based on sparse sampling,

this time corresponds to more than 94% of the whole BoVW computation time. In Fig. 8, however, we

show the times for computing the whole BoVW vector.

We can see that low dense sampling is much faster than sparse sampling. It is more than 33 times

faster in the original image resolution and, in the tiny images, it is still 3 times faster. Our proposed low

dense sampling would be able to process a 30 fps video in real-time almost since the first downsampling

size (100k pixels). Real-time 60 fps could be reached since the 5K size for the proposed method. With

sparse sampling, we would be able to process 30 fps videos in real time only for the 1k pixel resolution.

Downsampling could be an effective way for reducing extraction time, while keeping good accuracy

when using the proposed BoVW descriptors based on low dense sampling. However, in some heart

views, the difference between the heart structures may be on the details and they can disappear after

downsampling. Hence, downsampling must be used carefully.

4.5.3. Noise filtering

Ultrasound images are well known to contain noise or speckle. The speckle itself can also be considered

as diagnostic information [43, 44]. Therefore, we performed a set of experiments evaluating the impact

of noise/speckle in the accuracy of the proposed method.

We used four different filters and compared how each descriptor performed before and after filtering.

The filters used are: median, Frost [45], Kuan [46], Lee [47]. Frost, Kuan, and Lee are common filters

for ultrasound images, while the median filter is the very popular in the computer vision community. All

the filters were used with a window size of 7×7 pixels.

Table 6 shows the results for the proposed mid-level representations as well as for the global descrip-

tors. We can see that the classification accuracies of most of the global descriptors change. For some of

them, the filtering may have also removed details that were important for their extraction algorithms, so

their accuracy scores decreased (e.g., SASI, LAS). On the other hand, for some others, noise was harming

the representation and the results improved after noise filtering (e.g., Unser, HOG). We highlight the

increase in accuracy of HOG, which reached +90% accuracy.

Considering the proposed approach, we can see again its robustness to image transformations, which

reinforces its applicability on a variety of scenarios. Its classification accuracy consistently remained

above 90% for all filters tested. With the median filter, we achieve a remarkable result of ∼98%.

For the proposed method (BoVW low dense sampling), we performed a statistical analysis to verify if

there is significant difference in the results with and without noise filtering for all the filters tested. The

statistical tests also considered the different pooling techniques used (avg, max, avgSPM, and maxSPM).

We used the Pairwise Wilcoxon Rank Sum Test, which calculates comparisons between group levels with

corrections for multiple testing, with the Bonferroni correction of p-values. The tests showed that there
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is no significant change when applying any of the considered filtering methods, although small variations

are present in the results. We do not show the table with the statistical tests herein because none of the

filters showed statistical significance.

4.5.4. Classifier robustness

In this section, we considered the use of Random Forest as an alternative classifier to linear SVMs to

verify the robustness of our mid-level representations to different classifiers. SVM and Random Forest

rely on different rationales: SVM is a margin-based classifier, while Random Forest is based on bootstrap

aggregation and random sampling. We tested two different values for the parameter related to the number

of trees (ntree): 100 and 500. The difference in results for both values was not statistically significant

for all the descriptors evaluated and we decided to show only the results for ntree = 500.

Table 7 shows the results. We can see that our approach obtains the highest accuracy rates. We can

also note that some of the global descriptors have variation in performance when changing the classifier.

Our mid-level representations, however, are robust to the different classifiers and again keep accuracy

above 90%, highlighting their robustness to many conditions.

4.6. Discussion contrasting related work

In this section, we contrast the related work presented in Section 2.1 and our proposed methodology.

Most of the methods presented in Section 2.1 have peculiarities which can create constraints or extra

costs in their use. For instance, some approaches [1, 18, 4] only deal with the end diastolic (ED) frame,

which could limit their use in the real-time scenario (heart view shown during the examination). Waiting

for the ED frame to be displayed may delay the system response. In addition, it is not clear if those

methods also work with the other frames. In our experiments, we have worked with all frames, even

knowing that this may create a more difficult scenario.

Many methods [3, 18, 19, 6, 7] also apply pre-processing steps to normalize images/videos. Con-

trast/brightness normalization, noise reduction, alignment, and so on, usually introduce extra costs. We

show that our method works well even without any image pre-processing.

Some methods [3, 18, 4, 19, 5] also depend on training detectors, models or regions of interest that

are specific for each view. This is not a major problem, but can represent an additional cost if many

views are used or many different acquisition equipments are employed. Our method does not assume any

prior knowledge about the existing views nor the acquisition equipment.

Some methods [18] also depend on human intervention, limiting their scalability. Our method is

completely automatic.

An interesting phenomenon observed by studying the related work is that there is a trend in using

general features for heart view classification of echocardiograms. The most recent works [7–9] employed
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features that are popularly used for general visual recognition problems. This shows that the approach

we present in this paper also follows this trend.

We could also note that in this field, there is no standard dataset. Therefore, given the specificities

of each dataset, like the devices used, it is almost impossible to compare the results among the works.

Different devices can create easier or more difficult scenarios. We should use the works for analyzing

how each research group approached the problem, specially in terms of feature extraction and machine

learning. We could note, however, that the works analyzed are based on 2D echo images or videos (i.e.,

not 3D [10]).

Another issue is that authors of related work often do not specify carefully the views used. For

instance, there are views composed of sub-views, such as the short axis views (e.g., aortic valve, mitral

valve, mid left ventricle, and apex). Only some authors specify which short axis views they used.

5. Conclusions

This paper presents mid-level representations for real-time heart view classification of echocardio-

grams. The paper also presents a thorough experimental evaluation of different image descriptors and

an in-depth literature review of the existing solutions to this problem.

In the in-depth literature review presented, we could note that the existing solutions usually present

constraints, such as being evaluated only with the end diastolic frame, requiring the training of specific

detectors or regions of interest and, in some cases, requiring manual intervention. On top of that, we could

also note a trend in more recent works of using generic feature descriptors for heart view classification.

Our real-time solution to this problem is based on the use of a bag-of-visual-words (BoVW) methodol-

ogy, following the trend observed in the literature. The main novelty herein relies on low dense sampling

for image characterization, i.e., large and representative image regions are used (instead of a very dense

grid) resulting in few (< 20) highly discriminative regions per image. The small number of regions

drastically reduces the extraction time, making our approach suitable for real-time systems. Another

effect of using large regions is that those regions may sometimes correspond to whole heart structures.

Hence, the final BoVW descriptor can roughly correspond to an activation vector of heart structures.

The proposed approach does not depend on performing any pre- or post-processing in the images or in

the detected regions.

We compared the proposed approach with several existing image descriptors, both global and based

on visual codebooks. Our approach is the only one to present, at the same time, high accuracy and fast

feature extraction. We have also evaluated the methods in transformed versions of the image dataset

(downsampling and noise/speckle filtering) and the proposed approach was robust to the transformations.

Experiments comparing two different classifiers (linear SVMs and Random Forests) also show the quality
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and robustness of the proposed mid-level representations. In terms of effectiveness, our results were

consistently above 90% of average accuracy. Specifically after noise filtering with the median filter, the

proposed descriptors achieved very high accuracy (∼98%). In terms of efficiency, in some cases, we could

process 30 fps or 60 fps videos in real-time. Therefore, we can rely on the proposed classification system

regardless of the image resolution and acquisition conditions (e.g., presence or absence of noise).

As future work, we mention the possibility of creating a supervised codebook, aiming at selecting

image regions containing whole heart structures. This would open the opportunity to create a bag of

heart structures. Also, as most of the image descriptors herein explore different properties for image

characterization, it is likely that some of them encompass complementary information which can be an

opportunity for feature and classifier fusion.

We also would like to evaluate the method with more diseased hearts. Adding training examples of

this kind, we could evaluate the generalization power of the approach. We also envision the applicability

of the proposed characterization to other problems outside the realm of echocardiography.

Another important evaluation for real-time systems would be in the use of open-set classifiers, for

correctly discarding videos/frames of unknown views. While searching for the correct probe position in

the patient, the ultrasound device shows images that are not related to any view of interest. A real-time

classification system should be able to ignore such images instead of classifying them as one of the existing

views.
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Table 1: Summary of the relevant approaches for echocardiogram view classification. ED refers to the end-diastolic frame. View acronyms – A2C: apical two-chamber,
A3C: apical three-chamber, A4C: apical four-chamber, A5C: apical five-chamber, PLA: parasternal long axis, PSA: parasternal short axis, SC2C: subcostal two-chamber,
SC4C: subcostal four-chamber, SCLA: subcostal long axis, APLA: apical long axis.

Year Reference Short description Features Classifier Dataset/ De-
vice(s)

Views used Results Additional comments

2004 Ebadollahi
et al.[1]

Heart chambers detec-
tion and modeling with
constellation models.

Gray-level symmet-
ric axis transform
and Markov Ran-
dom Fields for con-
stellation

Multiclass SVM 21 videos (3209
frames)

Ten: PLA (2 views),
PSA (4 views), and api-
cal (4 views)

67.8% to 88.35%
(with clinical simi-
larities)

Considers spatial arrangement
of cavities; fails if chambers are
not detected; only ED frame

2006 Aschkenasy
et al.[2]

Multi-resolution spline
filtering and deforma-
tion energy with linear
discriminant analysis

Multi-resolution
spline filtering

Linear discrim-
inant analysis
(LDA)

90 images; HP
Sonos 5500

Four: A4C, A2C, PLA,
PSA

90% and 82.2%
(leave-one-out); 3.4s
for classification

Explores complementary multi-
ple image resolutions; costly

2006 Otey et
al.[3]

Hierarchical view clas-
sification with simple
features

Gradients, peak,
statistical measures,
other based on raw
pixel intensities

Multiclass SVM
and Logistic
Model Tree
(LMT)

23 patients; train:
124 videos, test:
55 videos; Siemens
ACUSON

Four: A2C, A4C, PSA,
PLA

92.7% (hierarchical
solution) and 89.1%
(normal solution)

Hierarchical characterization;
requires mask in the fan area
and pre-processing (contrast)

2006 Zhou et
al.[18]

Multiple object detec-
tion approach

Haar-like local rect-
angular features

LogitBoost net-
work

train: 857 videos,
test: 82 videos

Three: A2C, A4C, and a
background class

90.2%; 1.5s Requires manual annotation
and pre-processing (align, crop,
scale); only ED frame

2007 Park et
al.[4]

Classification based on
left ventricle detector

Haar-wavelet type
local features

Multiclass Log-
itBoost

train: 1080 videos,
test: 223 videos

Four: A2C, A4C, PLA,
PSA MID

96.3%; 1s Computes measures about the
left ventricle; fails if no LV is
detected; only ED frame

2008 Roy et
al.[19]

View, states, and sub-
states recognition

64-bin gray-scale
histogram for the
region of interest

Artificial neu-
ral network
(multilayer
perceptron)

20 videos (train:
3090 frames, test:
1567 frames); GE
Vivid4

Four: A2C, A4C, PLA,
PSA

97.19% Also classifies states and sub-
states; requires pre-processing
(contrast, brightness, noise)

2009 Snare et
al.[5]

NURBS model and ex-
tended Kalman filter

Models of heart
structures for each
view

Score based on
the structure
detection

train: 33 record-
ings, test: 35
(Nowergian
HUNT)

Three: A2C, A4C,
APLA

86.5%; less than 6ms
per view model

Fails if the structure is not de-
tected or falsely detected

2009 Kumar et
al.[6]

Fusing motion and
intensity information,
creating spatiotempo-
ral feature

Spatiotemporal
features (fusion of
motion and scale-
invariant features)

Multiclass SVM
for frames, ma-
jority voting for
videos

113 videos (2470
frames)

Four: A4C, PLA, PSAB
(PSA-basal), PSAP
(PSA-papillary); and
Eight: A2C, A3C, A5C,
PSAM (PSA-mitral)

98.4% (4views); 81%
(8views)

Considers motion; requires pre-
processing (align); Problems
in [6]: frame sum in Table 1 is
2, 434 and not 2, 470; link for
the dataset is broken

2013 Agarwal et
al.[7]

Using Histogram of
Oriented Gradients for
view classification

Histogram of Ori-
ented Gradients
(HOG)

SVM 703 images; GE
Vivid scanners

Two: PLA and PSA 98% Requires pre-processing (resize,
conversion)

2013 Wu et al.[8] Incremental classifica-
tion using low-level im-
age features

GIST Multiclass SVM 270 videos (train:
2700 frames, test:
2700 frames);
Philips CX50

Eight: A2C, A4C,
PLA, PSA, SC2C,
SC4C, SCLA, other
(unidentifiable)

98.51% (in 94.85%
of the testing sam-
ples, only 1 frame
was necessary)

No efficiency analysis

2013 Qian et
al.[9]

3D SIFT and sparse
codes in bag of visual
words

Bag of visual words
based on Cuboid de-
tector, 3D SIFT,
sparse coding, and
max pooling

Multiclass SVM 72 patients; 219
videos; GE Vivid 7
or E9

Eight: A2C, A3C,
A4C, A5C, PLA, PSAA
(PSA-aorta), PSAP
(PSA-papillary), PSAM
(PSA-mitral)

72% (8views) and
90% (3 views: all
apical, all PLA, all
PSA)

Considers motion
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Table 2: Feature vector dimensionalities. In (b), k is the dictionary size.

(a) Global descriptors (b) BoVW descriptors
Descriptor Vector dimension

SASI 64
LAS 256

Unser 32
GIST 960

HOG3 2,520

Pooling Vector dimension
Avg 1k
Max 1k

AvgSPM 21k
MaxSPM 21k

WSA 4k

3HOG’s dimensionality is related to input image’s size. The 2,520-d descriptor is obtained using the original resolution
of the images in our case.
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Figure 1: Proposed approach. (a) shows the visual dictionary creation. (b) shows image representation computation using
the created visual dictionary. The main novelty of our approach is the use of dense sampling with large representative heart
regions.
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(a) Very dense (b) Low dense

Figure 2: Illustration of dense sampling strategies using circles or a squared grid in (a) very dense (small regions) or (b)
low dense cases (large regions).

PLA PSA MID A2C A4C
14 14 7 17

2,338 2,361 1,034 1,794

Figure 3: Dataset details: average images, acronyms, number of videos, and number of frames of each view. We have
adjusted the contrast of each average image for better viewing (but no contrast or lighting adjustment was performed for
the experiments whatsoever).

Figure 4: Average images of each video of view A2C in the dataset illustrating the intra-view differences. We have adjusted
the contrast of each average image for better viewing (but no contrast or lighting adjustment was performed for the
experiments whatsoever).
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Figure 5: Evaluation of the dense sampling region size. We can see that the highest accuracies are for the region size of
120 pixels. At the same time, the extraction procedure becomes very fast as the region size increases. The lines for avg
and max pooling are overlapped in (b) as their times are almost the same. The BoVW vectors with the larger dictionary
are slower to compute for more dense samplings. Results considering linear SVMs as classifiers.
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Figure 6: Examples of image regions obtained by dense sampling with very large regions. Regions can comprise whole
heart structures, which is positive to our representation model.
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Figure 7: Evaluation of different codebook sizes for the BoVW descriptors. In (a), we have the results for the proposed
BoVW based on low dense sampling, while in (b) we have the results for BoVW based on sparse sampling. We can see
that the optimal codebook size for the proposed BoVW has around 100 or 200 visual words, independently of the pooling
method. For the BoVW based on sparse sampling, the optimal codebook size depends on the pooling strategy used. Results
considering linear SVMs as classifiers.
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(represented by F) have the best efficiency and effectiveness trade-off. Results considering linear SVMs as classifiers.
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Table 3: Statistical analysis comparing the descriptors in terms of accuracy. The arrow points to the winner descriptor while empty cells indicate non statistical
significance. We can see that the proposed methods outperform the other descriptors is most of the cases with statistical significance.

Global descriptors BoVW Sparse BoVW low dense (proposed approach)

SASI LAS Unser GIST HOG avgS
100 avgSPMS

100 WSAS
100 maxS

1000 maxSPMS
1000 avgD120

100 maxD120
100 avgSPMD120

100 maxSPMD120
100

SASI ← ← ↑ ↑ ↑ ↑ ↑ ↑ ↑
LAS ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Unser ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
GIST ← ← ↑ ↑ ↑ ↑
HOG ← ← ↑ ↑ ↑ ↑ ↑ ↑ ↑

avgS
100 ← ← ← ← ↑ ↑ ↑ ↑

avgSPMS
100 ← ← ↑ ↑ ↑ ↑ ↑

WSAS
100 ← ← ← ← ← ↑ ↑ ↑

maxS
1000 ← ← ↑ ↑ ↑ ↑ ↑ ↑

maxSPMS
1000 ← ← ← ← ← ← ← ← ←

avgD120
100 ← ← ← ← ← ← ← ← ←

maxD120
100 ← ← ← ← ← ← ← ←

avgSPMD120
100 ← ← ← ← ← ←

maxSPMD120
100 ← ← ← ← ← ← ← ← ←
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Figure 9: Average confusion matrices (of 100 runs) for four configurations of the proposed approach, varying the pooling
method. Each row represents the actual view of the frame, and the columns represents the predicted view. Each cell shows
the percentage of frames of the actual view in the predicted column. We can notice that accuracies are high specially for
view A2C. Spatial Pyramids (avgSPMD120

100 and maxSPMD120
100 ) increase the rate for view PSA MID in relation to the

pooling versions without them. Results consider linear SVMs as classifiers.

Specificity

S
en

si
tiv

ity

A2C vs A4C
A2C vs PLA
A2C vs PSA_MID
A4C vs PLA
A4C vs PSA_MID
PLA vs PSA_MID
MEAN (AUC = 1.00)

0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.8 0.6 0.4 0.2 0.0

Specificity

S
en

si
tiv

ity

A2C vs A4C
A2C vs PLA
A2C vs PSA_MID
A4C vs PLA
A4C vs PSA_MID
PLA vs PSA_MID
MEAN (AUC = 0.95)

0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.8 0.6 0.4 0.2 0.0

Specificity

S
en

si
tiv

ity

A2C vs A4C
A2C vs PLA
A2C vs PSA_MID
A4C vs PLA
A4C vs PSA_MID
PLA vs PSA_MID
MEAN (AUC = 0.99)

0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.8 0.6 0.4 0.2 0.0

Specificity

S
en

si
tiv

ity

A2C vs A4C
A2C vs PLA
A2C vs PSA_MID
A4C vs PLA
A4C vs PSA_MID
PLA vs PSA_MID
MEAN (AUC = 0.99)

0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.8 0.6 0.4 0.2 0.0

A2C A4C PLA PSA_MID

A2C

A4C

PLA

PSA_MID

100.0

0.0

0.0

0.0

0.0

100.0

28.77

0.0

0.0

0.0

71.23

3.77

0.0

0.0

0.0

96.23
0

10

20

30

40

50

60

70

80

90

100
A2C A4C PLA PSA_MID

A2C

A4C

PLA

PSA_MID

100.0

0.0

0.0

0.0

0.0

100.0

4.11

0.0

0.0

0.0

91.78

1.89

0.0

0.0

4.11

98.11
0

10

20

30

40

50

60

70

80

90

100
A2C A4C PLA PSA_MID

A2C

A4C

PLA

PSA_MID

89.8

0.0

0.0

0.0

10.2

100.0

48.97

0.0

0.0

0.0

44.83

0.0

0.0

0.0

6.21

100.0
0

10

20

30

40

50

60

70

80

90

100
A2C A4C PLA PSA_MID

A2C

A4C

PLA

PSA_MID

80.78

0.0

0.0

0.0

0.0

100.0

0.0

0.0

0.0

0.0

100.0

0.0

19.22

0.0

0.0

100.0
0

10

20

30

40

50

60

70

80

90

100

avgD120
100 maxD120

100 avgSPMD120
100 maxSPMD120

100

Figure 10: ROC curves of a random run of the proposed approach considering each pooling method with linear SVM, as
well as the corresponding confusion matrix. We can see that in some cases we have higher confusions than the average
(which is shown in Figure 9) but the ROC curves still present high area under the curve (AUC). From the ROC curves, it
is also possible to note that some classes are more confused sometimes (e.g., A4C × PSA MID for maxD120

100 , purple line)
but the combination mechanism of OVO in SVM accounts for such confusions and provides a very good mean classification
outcome in the end.
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Table 4: Dataset downsampled versions (image resolutions in pixels). The original dataset has ∼ 450k pixels per image.
We also show the radius of the dense sampling regions (in pixels and proportionally to width and height) for each dataset
version.

Low dense region size
Version Image resolution in pixels prop. width prop. height

450k 832 × 540 120 14% 22%
100k 392 × 254 60 15% 24%
50k 277 × 180 40 14% 22%
25k 196 × 127 30 15% 24%
5k 87 × 56 13 15% 23%
1k 39 × 25 6 15% 24%
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Figure 11: Evaluation of the resized versions of the dataset for the BoVW descriptors. In (a), we see that even with tiny
images, the results remain similar for the proposed BoVW descriptors based on low dense sampling. In (b), we see that
there is more variation in accuracy as images get smaller. Results consider linear SVMs as classifiers.
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Table 5: Times per image (and standard deviation) for low-level feature extraction when using BoVW descriptors in the
downsampled versions of the dataset. The proposed low dense sampling scheme is much faster than sparse sampling.

Dataset Average extraction time per image (in seconds)
Version low dense sampling sparse sampling ratio (sparse/dense)

450k 0.172 ± 0.040 5.811 ± 0.127 33.65
100k 0.038 ± 0.009 1.306 ± 0.059 34.82
50k 0.025 ± 0.006 0.665 ± 0.039 26.43
25k 0.023 ± 0.006 0.369 ± 0.034 16.10
5k 0.016 ± 0.008 0.115 ± 0.020 7.31
1k 0.013 ± 0.005 0.041 ± 0.005 3.02

Table 6: Evaluation of the proposed approach with noise filtering considering four different filters. The proposed approach
consistently obtains accuracies above 90% and reaches its maximum accuracy with the median filter (∼98%). The values
correspond to the average accuracies using linear SVMS as classifiers with confidence intervals (95% of confidence) for the
100 runs of the classification protocol.

Global descriptors
Descriptor Original Median Frost Kuan Lee

SASI 83.43 ± 2.90 78.19 ± 2.79 78.66 ± 3.47 76.03 ± 2.82 76.85 ± 3.15
LAS 67.69 ± 3.32 46.30 ± 2.50 44.27 ± 2.68 54.55 ± 3.72 64.59 ± 3.02

Unser 44.46 ± 3.96 55.99 ± 4.09 69.24 ± 3.33 67.97 ± 3.60 69.31 ± 3.49
GIST 84.79 ± 3.10 84.81 ± 3.08 79.15 ± 3.56 81.64 ± 3.09 77.66 ± 3.57
HOG 81.26 ± 3.15 91.29 ± 2.37 92.10 ± 2.13 90.22 ± 2.34 90.74 ± 2.30

BoVW (low dense sampling) - proposed approach
Descriptor Original Median Frost Kuan Lee

avgD120
100 95.02 ± 1.64 97.00 ± 1.06 92.46 ± 1.64 91.62 ± 2.37 92.65 ± 2.16

maxD120
100 93.11 ± 1.88 97.47 ± 1.06 92.54 ± 1.90 93.87 ± 1.65 93.32 ± 1.93

avgSPMD120
100 92.12 ± 1.90 96.55 ± 1.19 90.63 ± 2.29 92.68 ± 1.51 91.66 ± 2.05

maxSPMD120
100 95.65 ± 1.50 97.94 ± 0.83 92.90 ± 1.98 93.60 ± 1.55 93.40 ± 2.05

Table 7: Evaluation of Random Forest as an alternative classifier to linear SVMs. We can note the robustness of the
proposed approach to different classifiers and again the accuracy rates remain over 90%.

Global descriptors
Descriptor Linear SVM Random Forest

SASI 83.43 ± 2.90 60.94 ± 3.60
LAS 67.69 ± 3.32 61.65 ± 3.35

Unser 44.46 ± 3.96 40.62 ± 3.96
GIST 84.79 ± 3.10 75.24 ± 3.79
HOG 81.26 ± 3.15 82.98 ± 3.10

BoVW (low dense sampling) - proposed approach
Descriptor Linear SVM Random Forest

avgD120
100 95.02 ± 1.64 93.41 ± 1.67

maxD120
100 93.11 ± 1.88 94.15 ± 1.45

avgSPMD120
100 92.12 ± 1.90 90.32 ± 2.29

maxSPMD120
100 95.65 ± 1.50 93.72 ± 1.77
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